首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   30篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   5篇
  2019年   3篇
  2018年   9篇
  2017年   4篇
  2016年   9篇
  2015年   18篇
  2014年   13篇
  2013年   27篇
  2012年   40篇
  2011年   25篇
  2010年   21篇
  2009年   20篇
  2008年   27篇
  2007年   25篇
  2006年   30篇
  2005年   16篇
  2004年   15篇
  2003年   15篇
  2002年   17篇
  2001年   7篇
  2000年   10篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1976年   2篇
  1974年   2篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1963年   1篇
排序方式: 共有419条查询结果,搜索用时 15 毫秒
21.
22.
The innate immune system of the brain is principally composed of microglial cells and astrocytes, which, once activated, protect neurons against insults (infectious agents, lesions, etc.). Activated glial cells produce inflammatory cytokines that act specifically through receptors expressed by the brain. The functional consequences of brain cytokine action (also called neuroinflammation) are alterations in cognition, mood and behaviour, a hallmark of altered well-being. In addition, proinflammatory cytokines play a key role in depression and neurodegenerative diseases linked to aging. Polyunsaturated fatty acids (PUFA) are essential nutrients and essential components of neuronal and glial cell membranes. PUFA from the diet regulate both prostaglandin and proinflammatory cytokine production. n-3 fatty acids are anti-inflammatory while n-6 fatty acids are precursors of prostaglandins. Inappropriate amounts of dietary n-6 and n-3 fatty acids could lead to neuroinflammation because of their abundance in the brain and reduced well-being. Depending on which PUFA are present in the diet, neuroinflammation will, therefore, be kept at a minimum or exacerbated. This could explain the protective role of n-3 fatty acids in neurodegenerative diseases linked to aging.  相似文献   
23.
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex with a peripheral arm involved in electron transfer and a membrane arm most likely involved in proton translocation. It was proposed that the quinone binding site is located at the joint of the two arms. Most likely, proton translocation in the membrane arm is enabled by the energy of the electron transfer reaction in the peripheral arm transmitted by conformational changes. For the detection of the conformational changes and the localization of the quinone binding site, we set up a combination of site-directed spin labeling and EPR spectroscopy. Cysteine residues were introduced to the surface of the Escherichia coli complex I. The spin label (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate (MTSL) was exclusively bound to the engineered positions. Neither the mutation nor the labeling had an effect on the NADH:decyl-ubiquinone oxidoreductase activity. The characteristic signals of the spin label were detected by EPR spectroscopy, which did not change by reducing the preparation with NADH. A decyl-ubiquinone derivative with the spin label covalently attached to the alkyl chain was synthesized in order to localize the quinone binding site. The distance between a MTSL labeled complex I variant and the bound quinone was determined by continuous-wave (cw) EPR allowing an inference on the location of the quinone binding site. The distances between the labeled quinone and other complex I variants will be determined in future experiments to receive further geometry information by triangulation.  相似文献   
24.

Background  

BACTIBASE is an integrated open-access database designed for the characterization of bacterial antimicrobial peptides, commonly known as bacteriocins.  相似文献   
25.
CD4+ T-cell depletion during acute human immunodeficiency virus infection occurs predominantly in the gastrointestinal mucosa. Using experimental data on SIV(mac251) viral load in blood and CD4+ T cells in the jejunum, we modeled the kinetics of CD4+ T-cell infection and death and estimated the viral infectivity. The infectivity of SIV(mac251) is higher than previously estimated for SHIV89.6P infection, but this higher infectivity is offset by a lower average peak viral load in SIV(mac251). Thus, the dynamics of target cell infection and death are remarkably similar between a CXCR4- and a CCR5-tropic infection in vivo.  相似文献   
26.
27.
An endocellulase-free multienzyme complex was produced by a thermophilic anaerobic bacterium, Thermoanaerobacterium thermosaccharolyticum strain NOI-1, when grown on xylan. The temperature and pH optima for growth were 60 degrees C and 6.0, respectively. The bacterial cells were found to adhere to insoluble xylan and Avicel. A scanning electron microscopy analysis showed the adhesion of xylan to the cells. An endocellulase-free multienzyme complex was isolated from the crude enzyme of strain NOI-1 by affinity purification on cellulose and Sephacryl S-300 gel filtration. The molecular mass of the multienzyme complex was estimated to be about 1,200 kDa. The multienzyme complex showed one protein on native PAGE, one xylanase on a native zymogram, 21 proteins on SDS-PAGE, and 5 xylanases on a SDS zymogram. The multienzyme complex consisted of xylanase, beta-xylosidase, alpha-L-arabinofuranosidase, beta-glucosidase, and cellobiohydrolase. The multienzyme complex was effective in hydrolyzing xylan and corn hulls. This is the first report of an endocellulase-free multienzyme complex produced by a thermophilic anaerobic bacterium, T. thermosaccharolyticum strain NOI-1.  相似文献   
28.
Ooi CH  Oh HK  Wang HZ  Tan AL  Wu J  Lee M  Rha SY  Chung HC  Virshup DM  Tan P 《PLoS genetics》2011,7(12):e1002415
MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA-pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA-pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA-pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes ("hubs"), most nodes in the miRNA-pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA-pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available.  相似文献   
29.
In recent years, our view of adipose tissue has evolved from a passive sink for energy storage to an active tissue producing multiple molecules acting on various tissues in different aspects of energy homeostasis. The production of adipose-derived secretory products is tightly regulated as a function of adipocyte lipid accumulation, but the mechanisms by which fat cells are able to sense the levels of their triglyceride stores still remains largely unknown. This paper reviews new insights into this question taking cholesterol as a potential intracellular signaling molecule.  相似文献   
30.
Caveolin-1 has been implicated in apical transport of glycosylphosphatidylinositol (GPI)-anchored proteins and influenza virus hemagglutinin (HA). Here we have studied the role of caveolin-1 in apical membrane transport by generating caveolin-1-deficient Madin-Darby canine kidney (MDCK) cells using retrovirus-mediated RNA interference. The caveolin-1 knockdown (cav1-KD) MDCK cells were devoid of caveolae. In addition, caveolin-2 was retained in the Golgi apparatus in cav1-KD MDCK cells. However, we found no significant alterations in the apical transport kinetics of GPI-anchored proteins or HA upon depletion of caveolin-1. Similar results were obtained using embryonic fibroblasts from caveolin-1-knockout mice. Thus, we conclude that caveolin-1 does not play a major role in lipid raft-mediated biosynthetic membrane trafficking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号