首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   31篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   9篇
  2017年   2篇
  2016年   7篇
  2015年   15篇
  2014年   9篇
  2013年   23篇
  2012年   34篇
  2011年   23篇
  2010年   17篇
  2009年   18篇
  2008年   25篇
  2007年   25篇
  2006年   32篇
  2005年   16篇
  2004年   18篇
  2003年   17篇
  2002年   17篇
  2001年   9篇
  2000年   11篇
  1999年   7篇
  1998年   9篇
  1997年   1篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
  1963年   1篇
排序方式: 共有405条查询结果,搜索用时 281 毫秒
111.
The Cf-9 gene encodes an extracytoplasmic leucine-rich repeat protein that confers resistance in tomato to races of the fungus Cladosporium fulvum that express the corresponding avirulence gene Avr 9. We investigated whether the genomic Cf-9 gene functions in potato and tobacco. Transgenic tobacco and potato plants carrying Cf-9 exhibit a rapid hypersensitive cell death response (HR) to Avr 9 peptide injection. Cf 9 tobacco plants were reciprocally crossed to Avr 9-producing tobacco. A developmentally regulated seedling lethal phenotype occurred in F1 progeny when Cf9 was used as the male parent and Avr 9 as the female parent. However, when Cf9 was inherited in the maternal tissue and a heterozygous Avr 9 plant was used as the pollen donor, a much earlier reaction was caused, leading to no germination of any F1 seed. Detailed analysis of the Avr 9-induced responses in Cf 9 tobacco leaves revealed that (1) most mesophyll cells died within 3 hr (compared with 12 to 16 hr in tomato); (2) the macroscopic HR was visible at an Avr 9 titer five times lower than that which caused visible symptoms in tomato; (3) the HR invariably extended into noninjected panels of the tobacco leaf; (4) no HR occurred in leaves of young tobacco plants; (5) in older plants, the HR was dramatically enhanced by sequential Avr 9 challenges; and (6) coexpression of a salicylate hydroxylase transgene (nahG) from Pseudomonas putida reduced the severity of the macroscopic leaf HR and also restored germination to Cf 9 x 35S:Avr 9 F1 seedlings. Simultaneous introduction of Cf-9 homologs (Hcr 9-9 genes A and B or D) along with the native Cf-9 gene did not alter the responses that were specifically induced by Avr 9. Various ways to use the Cf-9-Avr 9 gene combination to engineer broad-spectrum disease resistance in several solanaceous species are discussed.  相似文献   
112.
113.
We describe here a simple, general procedure for the purification of a variety of lectins, and for the preparation of lectin-ferritin conjugates of defined molar composition and binding properties to be used as probes for cell surface saccharides. The technique uses a “universal” affinity column for lectins and their conjugates, which consists of hog sulfated gastric mucin glycopeptides covalently coupled to agarose. The procedure involes: (a) purification of lectins by chromatography of aqueous extracts of seeds or other lectin-containing fluids over the affinity column, followed by desorption of the desired lectin with its hapten suge; (b) iodination of the lectin to serve as a marker during subsequent steps; (c) conjugation of lectin to ferritin with glutaraldehyde; (d) collection of active lectin-ferritin conjugates by affinity chromatography; and (e) separation of monomeric lectin-ferritin conjugates from larger aggregates and unconjugated lectin by gel chromatography. Based on radioactivity and absorbancy at 310 nm for lectin and ferritin, respectively, the conjugates consist of one to two molecules of lectin per ferrritin molecule. Binding studies of native lectins and their ferritin conjugates to dispersed pancreatic acinar cells showed that the conjugation procedure does not significantly alter either the affinity constant of the lectin for its receptor on the cell surface or the number of sites detected.  相似文献   
114.
Plants accumulate a vast array of secondary metabolites,which constitute a natural resource for pharmaceuticals.Oldenlandia corymbosa belongs to the Rubiaceae family,and has been used in traditional medicine to treat different diseases,including cancer.However,the active metabolites of the plant,their biosynthetic pathway and mode of action in cancer are unknown.To fill these gaps,we exposed this plant to eight different stress conditions and combined different omics data capturing gene expressi...  相似文献   
115.
Efforts to define serological correlates of protection against COVID-19 have been hampered by the lack of a simple, scalable, standardised assay for SARS-CoV-2 infection and antibody neutralisation. Plaque assays remain the gold standard, but are impractical for high-throughput screening. In this study, we show that expression of viral proteases may be used to quantitate infected cells. Our assays exploit the cleavage of specific oligopeptide linkers, leading to the activation of cell-based optical biosensors. First, we characterise these biosensors using recombinant SARS-CoV-2 proteases. Next, we confirm their ability to detect viral protease expression during replication of authentic virus. Finally, we generate reporter cells stably expressing an optimised luciferase-based biosensor, enabling viral infection to be measured within 24 h in a 96- or 384-well plate format, including variants of concern. We have therefore developed a luminescent SARS-CoV-2 reporter cell line, and demonstrated its utility for the relative quantitation of infectious virus and titration of neutralising antibodies.  相似文献   
116.
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, β-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60°C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.  相似文献   
117.
BackgroundUNAIDS has established new program targets for 2025 to achieve the goal of eliminating AIDS as a public health threat by 2030. This study reports on efforts to use mathematical models to estimate the impact of achieving those targets.Methods and findingsWe simulated the impact of achieving the targets at country level using the Goals model, a mathematical simulation model of HIV epidemic dynamics that includes the impact of prevention and treatment interventions. For 77 high-burden countries, we fit the model to surveillance and survey data for 1970 to 2020 and then projected the impact of achieving the targets for the period 2019 to 2030. Results from these 77 countries were extrapolated to produce estimates for 96 others. Goals model results were checked by comparing against projections done with the Optima HIV model and the AIDS Epidemic Model (AEM) for selected countries. We included estimates of the impact of societal enablers (access to justice and law reform, stigma and discrimination elimination, and gender equality) and the impact of Coronavirus Disease 2019 (COVID-19). Results show that achieving the 2025 targets would reduce new annual infections by 83% (71% to 86% across regions) and AIDS-related deaths by 78% (67% to 81% across regions) by 2025 compared to 2010. Lack of progress on societal enablers could endanger these achievements and result in as many as 2.6 million (44%) cumulative additional new HIV infections and 440,000 (54%) more AIDS-related deaths between 2020 and 2030 compared to full achievement of all targets. COVID-19–related disruptions could increase new HIV infections and AIDS-related deaths by 10% in the next 2 years, but targets could still be achieved by 2025. Study limitations include the reliance on self-reports for most data on behaviors, the use of intervention effect sizes from published studies that may overstate intervention impacts outside of controlled study settings, and the use of proxy countries to estimate the impact in countries with fewer than 4,000 annual HIV infections.ConclusionsThe new targets for 2025 build on the progress made since 2010 and represent ambitious short-term goals. Achieving these targets would bring us close to the goals of reducing new HIV infections and AIDS-related deaths by 90% between 2010 and 2030. By 2025, global new infections and AIDS deaths would drop to 4.4 and 3.9 per 100,000 population, and the number of people living with HIV (PLHIV) would be declining. There would be 32 million people on treatment, and they would need continuing support for their lifetime. Incidence for the total global population would be below 0.15% everywhere. The number of PLHIV would start declining by 2023.

John Stover and co-workers assess the potential health impacts of UNAIDS’ HIV/AIDS targets.  相似文献   
118.
Curcumin (Cur) is an acidic polyphenol with some effects on α-glucosidase (α-Glu), but Cur has disadvantages such as being a weak target, lacking passing the blood–brain barrier and having low bioavailability. To enhance the curative effect of Cur, the hybrid composed of ZnO nanoparticles decorated on rGO was used to load Cur (ZnO@rGO-Cur). The use of the multispectral method and enzyme inhibition kinetics analysis certify the inhibitory effect and interaction mechanism of ZnO@rGO-Cur with α-Glu. The static quenching of α-Glu with both Cur and ZnO@rGO-Cur is primarily driven by hydrogen bond and van der Waals interactions. The conformation-changing ability by binding to the neighbouring phenolic hydroxyl group of Cur increased their ability to alter the secondary structure of α-Glu, resulting in the inhibition of enzyme activity. The inhibition constant (Ki, Cur > Kis,ZnO@rGO-Cur ) showed that the inhibition effect of ZnO@rGO-Cur on α-Glu was larger than that of Cur. The CCK-8 experiments proved that ZnO@rGO nanocomposites have good biocompatibility. These results suggest that the therapeutic potential of ZnO@rGO-Cur composite is an emerging nanocarrier platform for drug delivery systems for the potential treatment of diabetes mellitus.  相似文献   
119.
In the recent years, new advances in the biology of lipid droplets led these structures specialized for lipid storage to be considered as new universal intracellular organelles playing active roles in cell physiology. Concomitantly, studies on the pathogenesis of metabolic diseases such as type 2 diabetes or atherosclerosis, associated with ongoing epidemic obesity, have pointed out the importance of lipotoxic effects in metabolic dysfunction, generated by ectopic lipid storage in non-adipose tissues. The purpose of this paper is to establish connections between recent discoveries in lipid droplet biology and novel views in the pathology of the metabolic syndrome. Bringing together the new concepts produced in these two separated fields might show the way towards the definition of innovative strategies to treat metabolic diseases. Particular attention is given to the role of adipocyte-specific proteins that interact with lipid droplets and confer unique functions to adipocyte lipid storage by limiting the spill-over of fatty acids and their lipotoxic effects.  相似文献   
120.
We have analyzed in vitro the binding characteristics of members of the ADP-ribosylation factor (ARF) family of proteins to a highly purified rat liver peroxisome preparation void of Golgi membranes and studied in vivo a role these proteins play in the proliferation of yeast peroxisomes. Although both ARF1 and ARF6 were found on peroxisomes, coatomer recruitment only depended on ARF1-GTP. Recruitment of ARF1 and coatomer to peroxisomes was significantly affected both by pretreating the animals with peroxisome proliferators and by ATP and a cytosolic fraction designated the intermediate pool fraction depleted of ARF and coatomer. In the presence of ATP, the concentrations of ARF1 and coatomer on peroxisomes were reduced, whereas intermediate pool fraction led to a concentration-dependent decrease in ARF and increase in coatomer. Brefeldin A, a fungal toxin that is known to reduce ARF1 binding to Golgi membranes, did not affect ARF1 binding to peroxisomes. In Saccharomyces cerevisiae, both ScARF1 and ScARF3, the yeast orthologs of mammalian ARF1 and ARF6, were implicated in the control of peroxisome proliferation. ScARF1 regulated this process in a positive manner, and ScARF3 regulated it in a negative manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号