首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26115篇
  免费   2445篇
  国内免费   15篇
  2022年   175篇
  2021年   271篇
  2020年   173篇
  2019年   249篇
  2018年   314篇
  2017年   292篇
  2016年   470篇
  2015年   906篇
  2014年   1012篇
  2013年   1301篇
  2012年   1600篇
  2011年   1607篇
  2010年   1098篇
  2009年   1026篇
  2008年   1479篇
  2007年   1568篇
  2006年   1440篇
  2005年   1461篇
  2004年   1448篇
  2003年   1289篇
  2002年   1222篇
  2001年   405篇
  2000年   323篇
  1999年   359篇
  1998年   395篇
  1997年   240篇
  1996年   222篇
  1995年   200篇
  1994年   236篇
  1993年   217篇
  1992年   253篇
  1991年   226篇
  1990年   206篇
  1989年   229篇
  1988年   182篇
  1987年   212篇
  1986年   199篇
  1985年   235篇
  1984年   221篇
  1983年   206篇
  1982年   224篇
  1981年   199篇
  1980年   173篇
  1979年   175篇
  1978年   148篇
  1977年   160篇
  1976年   128篇
  1974年   160篇
  1973年   131篇
  1972年   113篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
941.
942.
Molecular Biology Reports - Eugenia uniflora is an Atlantic Forest native species, occurring in contrasting edaphoclimatic environments. The identification of genes involved in response to abiotic...  相似文献   
943.
Madagascar's endemic ground-dwelling leaf chameleons (Brookesiinae: Brookesia Gray, 1865 + Palleon Glaw, et al., Salamandra, 2013, 49, pp. 237–238) form the sister taxon to all other chameleons (i.e., the Chamaeleoninae). They possess a limited ability of color change, a rather dull coloration, and a nonprehensile tail assisting locomotion in the leaf litter on the forest floor. Most Brookesia species can readily be recognized by peculiar spiky dorsolateral projections (“Rückensäge”), which are caused by an aberrant vertebral structure and might function as body armor to prevent predation. In addition to a pronounced Rückensäge, the Antsingy leaf chameleon Brookesia perarmata (Angel, 1933) exhibits conspicuous, acuminate tubercle scales on the lateral flanks and extremities, thereby considerably enhancing the overall armored appearance. Such structures are exceptional within the Chamaeleonidae and despite an appreciable interest in the integument of chameleons in general, the morphology of these integumentary elements remains shrouded in mystery. Using various conventional and petrographic histological approaches combined with μCT-imaging, we reveal that the tubercle scales consist of osseous, multicusped cores that are embedded within the dermis. Based on this, they consequently can be interpreted as osteoderms, which to the best of our knowledge is the first record of such for the entire Chamaeleonidae and only the second one for the entire clade Iguania. The combination of certain aspects of tissue composition (especially the presence of large, interconnected, and marrow-filled cavities) together with the precise location within the dermis (being completely enveloped by the stratum superficiale), however, discriminate the osteoderms of B. perarmata from those known for all other lepidosaurs.  相似文献   
944.
945.
In clinical trials, the comparison of two different populations is a common problem. Nonlinear (parametric) regression models are commonly used to describe the relationship between covariates, such as concentration or dose, and a response variable in the two groups. In some situations, it is reasonable to assume some model parameters to be the same, for instance, the placebo effect or the maximum treatment effect. In this paper, we develop a (parametric) bootstrap test to establish the similarity of two regression curves sharing some common parameters. We show by theoretical arguments and by means of a simulation study that the new test controls its significance level and achieves a reasonable power. Moreover, it is demonstrated that under the assumption of common parameters, a considerably more powerful test can be constructed compared with the test that does not use this assumption. Finally, we illustrate the potential applications of the new methodology by a clinical trial example.  相似文献   
946.
Understanding the production, response, and genetics of signals used in mate choice can inform our understanding of the evolution of both intraspecific mate choice and reproductive isolation. Sex pheromones are important for courtship and mate choice in many insects, but we know relatively little of their role in butterflies. The butterfly Heliconius melpomene uses a complex blend of wing androconial compounds during courtship. Electroantennography in H. melpomene and its close relative Heliconius cydno showed that responses to androconial extracts were not species specific. Females of both species responded equally strongly to extracts of both species, suggesting conservation of peripheral nervous system elements across the two species. Individual blend components provoked little to no response, with the exception of octadecanal, a major component of the H. melpomene blend. Supplementing octadecanal on the wings of octadecanal-rich H. melpomene males led to an increase in the time until mating, demonstrating the bioactivity of octadecanal in Heliconius. Using quantitative trait locus (QTL) mapping, we identified a single locus on chromosome 20 responsible for 41% of the parental species’ difference in octadecanal production. This QTL does not overlap with any of the major wing color or mate choice loci, nor does it overlap with known regions of elevated or reduced FST. A set of 16 candidate fatty acid biosynthesis genes lies underneath the QTL. Pheromones in Heliconius carry information relevant for mate choice and are under simple genetic control, suggesting they could be important during speciation.  相似文献   
947.
During evolution, sponges (Porifera) have honed the genetic toolbox and biosynthetic mechanisms for the fabrication of siliceous skeletal components (spicules). Spicules carry a protein scaffold embedded within biogenic silica (biosilica) and feature an amazing range of optical, structural, and mechanical properties. Thus, it is tempting to explore the low-energy synthetic pathways of spiculogenesis for the fabrication of innovative hybrid materials. In this synthetic biology approach, the uptake of multifunctional nonbiogenic nanoparticles (fluorescent, superparamagnetic) by spicule-forming cells of bioreactor-cultivated sponge primmorphs provides access to spiculogenesis. The ingested nanoparticles were detected within intracellular vesicles resembling silicasomes (silica-rich cellular compartments) and as cytosolic clusters where they lent primmorphs fluorescent/magnetic properties. During spiculogenesis, the nanoparticles initially formed an incomplete layer around juvenile, intracellular spicules. In the mature, extracellular spicules the nanoparticles were densely arranged as a surface layer that rendered the resulting composite fluorescent and magnetic. By branching off the conventional route of solid-state materials synthesis under harsh conditions, a new pathway has been opened to a versatile platform that allows adding functionalities to growing spicules as templates in living cells, using nonbiogenic nanoscale building blocks with multiple functionalities. The magnet-assisted alignment renders this composite with its fluorescent/magnetic properties potentially suitable for application in biooptoelectronics and microelectronics (e.g., microscale on-chip waveguides for applications of optical detection and sensing).  相似文献   
948.
A barrier to cost-efficient biomanufacturing is the instability of engineered genetic elements, such as plasmids. Instability can also manifest at the whole-genome level, when fungal dikaryons revert to parental species due to nuclear segregation during cell division. Here, we show that by encapsulating Saccharomyces cerevisiae-Pichia stipitis dikaryons in an alginate matrix, we can limit cell division and preserve their expanded metabolic capabilities. As a proxy to cellulosic ethanol production, we tested the capacity of such cells to carry out ethanologenic fermentation of glucose and xylose, examining substrate use, ploidy, and cell viability in relation to planktonic fusants, as well as in relation to planktonic and encapsulated cell cultures consisting of mixtures of these species. Glucose and xylose consumption and ethanol production by encapsulated dikaryons were greater than planktonic controls. Simultaneous co-fermentation did not occur; rather the order and kinetics of glucose and xylose catabolism by encapsulated dikaryons were similar to cultures where the two species were encapsulated together. Over repeated cycles of fed-batch culture, encapsulated S. cerevisiae-P. stipitis fusants exhibited a dramatic increase in genomic stability, relative to planktonic fusants. Encapsulation also increased the stability of antibiotic-resistance plasmids used to mark each species and preserved a fixed ratio of S. cerevisiae to P. stipitis cells in mixed cultures. Our data demonstrate how encapsulating cells in an extracellular matrix restricts cell division and, thereby, preserves the stability and biological activity of entities ranging from genomes to plasmids to mixed populations, each of which can be essential to cost-efficient biomanufacturing.  相似文献   
949.
950.
BackgroundSimulium damnosum sensu lato (s.l.) blackflies transmit Onchocerca volvulus, a filarial nematode that causes human onchocerciasis. Human landing catches (HLCs) is currently the sole method used to estimate blackfly biting rates but is labour-intensive and questionable on ethical grounds. A potential alternative is to measure host antibodies to vector saliva deposited during bloodfeeding. In this study, immunoassays to quantify human antibody responses to S. damnosum s.l. saliva were developed, and the salivary proteome of S. damnosum s.l. was investigated.Methodology/Principal findingsBlood samples from people living in onchocerciasis-endemic areas in Ghana were collected during the wet season; samples from people living in Accra, a blackfly-free area, were considered negative controls and compared to samples from blackfly-free locations in Sudan. Blackflies were collected by HLCs and dissected to extract their salivary glands. An ELISA measuring anti-S. damnosum s.l. salivary IgG and IgM was optimized and used to quantify the humoral immune response of 958 individuals. Both immunoassays differentiated negative controls from endemic participants. Salivary proteins were separated by gel-electrophoresis, and antigenic proteins visualized by immunoblot. Liquid chromatography mass spectrometry (LC–MS/MS) was performed to characterize the proteome of S. damnosum s.l. salivary glands. Several antigenic proteins were recognized, with the major ones located around 15 and 40 kDa. LC–MS/MS identified the presence of antigen 5-related protein, apyrase/nucleotidase, and hyaluronidase.Conclusions/SignificanceThis study validated for the first time human immunoassays that quantify humoral immune responses as potential markers of exposure to blackfly bites. These assays have the potential to facilitate understanding patterns of exposure as well as evaluating the impact of vector control on biting rates. Future studies need to investigate seasonal fluctuations of these antibody responses, potential cross-reactions with other bloodsucking arthropods, and thoroughly identify the most immunogenic proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号