首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   49篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   9篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   16篇
  2014年   23篇
  2013年   21篇
  2012年   25篇
  2011年   39篇
  2010年   17篇
  2009年   10篇
  2008年   25篇
  2007年   13篇
  2006年   19篇
  2005年   16篇
  2004年   18篇
  2003年   13篇
  2002年   20篇
  2001年   13篇
  2000年   10篇
  1999年   12篇
  1998年   10篇
  1997年   6篇
  1996年   2篇
  1995年   5篇
  1994年   6篇
  1992年   7篇
  1991年   10篇
  1990年   19篇
  1989年   13篇
  1988年   8篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1981年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有475条查询结果,搜索用时 15 毫秒
81.
Caloric excess has been postulated to disrupt cardiac function via (i) the generation of toxic intermediates, (ii) via protein glycosylation and (iii) through the generation of reactive oxygen species. It is now increasingly being recognized that the nutrient intermediates themselves may modulate metabolic pathways through the post-translational modifications of metabolic enzymes. In light of the high energy demand of the heart, these nutrient mediated modulations in metabolic pathway functioning may play an important role in cardiac function and in the capacity of the heart to adapt to biomechanical stressors. In this review the role of protein acetylation and deacetylation in the control of metabolic programs is explored. Although not extensively investigated directly in the heart, the emerging data support that these nutrient mediated post-translational regulatory events (i) modulate cardiac metabolic pathways, (ii) integrate nutrient flux mediated post-translational effects with cardiac function and (iii) may be important in the development of cardiac pathology. Areas of investigation that need to be explored are highlighted. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   
82.
Bundle sheath extensions (BSEs) are key features of leaf structure with currently little-understood functions. To test the hypothesis that BSEs reduce the hydraulic resistance from the bundle sheath to the epidermis (r(be)) and thereby accelerate hydropassive stomatal movements, we compared stomatal responses with reduced humidity and leaf excision among 20 species with heterobaric or homobaric leaves and herbaceous or woody life forms. We hypothesized that low r(be) due to the presence of BSEs would increase the rate of stomatal opening (V) during transient wrong-way responses, but more so during wrong-way responses to excision (V(e)) than humidity (V(h)), thus increasing the ratio of V(e) to V(h). We predicted the same trends for herbaceous relative to woody species given greater hydraulic resistance in woody species. We found that V(e), V(h), and their ratio were 2.3 to 4.4 times greater in heterobaric than homobaric leaves and 2.0 to 3.1 times greater in herbaceous than woody species. To assess possible causes for these differences, we simulated these experiments in a dynamic compartment/resistance model, which predicted larger V(e) and V(e)/V(h) in leaves with smaller r(be). These results support the hypothesis that BSEs reduce r(be). Comparison of our data and simulations suggested that r(be) is approximately 4 to 16 times larger in homobaric than heterobaric leaves. Our study provides new evidence that variations in the distribution of hydraulic resistance within the leaf and plant are central to understanding dynamic stomatal responses to water status and their ecological correlates and that BSEs play several key roles in the functional ecology of heterobaric leaves.  相似文献   
83.
Biopolymers are important substrates for heterotrophic bacteria in oligotrophic freshwater environments, but information on bacterial growth kinetics with biopolymers is scarce. The objective of this study was to characterize bacterial biopolymer utilization in these environments by assessing the growth kinetics of Flavobacterium johnsoniae strain A3, which is specialized in utilizing biopolymers at μg liter−1 levels. Growth of strain A3 with amylopectin, xyloglucan, gelatin, maltose, or fructose at 0 to 200 μg C liter−1 in tap water followed Monod or Teissier kinetics, whereas growth with laminarin followed Teissier kinetics. Classification of the specific affinity of strain A3 for the tested substrates resulted in the following affinity order: laminarin (7.9 × 10−2 liter·μg−1 of C·h−1) ≫ maltose > amylopectin ≈ gelatin ≈ xyloglucan > fructose (0.69 × 10−2 liter·μg−1 of C·h−1). No specific affinity could be determined for proline, but it appeared to be high. Extracellular degradation controlled growth with amylopectin, xyloglucan, or gelatin but not with laminarin, which could explain the higher affinity for laminarin. The main degradation products were oligosaccharides or oligopeptides, because only some individual monosaccharides and amino acids promoted growth. A higher yield and a lower ATP cell−1 level was achieved at ≤10 μg C liter−1 than at >10 μg C liter−1 with every substrate except gelatin. The high specific affinities of strain A3 for different biopolymers confirm that some representatives of the classes Cytophagia-Flavobacteria are highly adapted to growth with these compounds at μg liter−1 levels and support the hypothesis that Cytophagia-Flavobacteria play an important role in biopolymer degradation in (ultra)oligotrophic freshwater environments.  相似文献   
84.
Studies to quantify the protein acetylome show that lysine-residue acetylation rivals phosphorylation in prevalence as a posttranslational modification. Interesting, this posttranslational modification is modified by nutrient flux and by redox stress and targets the vast majority of metabolic pathway proteins in the mitochondria. Furthermore, the mitochondrial deacetylase enzyme SIRT3 appears to be regulated by exercise in skeletal muscle and in response to pressure overload in the heart. The alteration of protein lysine residues by acetylation and the enzymes controlling deacetylation are beginning to be explored as important regulatory events in the control of mitochondrial function and homeostasis. This review focuses on the mitochondrial targets of SIRT3 that are functionally implicated in heart biology and pathology and on the direct cardiac consequences of the genetic manipulation of SIRT3. As therapeutic modulators of other SIRT isoforms have been identified, the longer-term objective of our understanding of this biology would be to identify SIRT3 modulators as putative cardiac therapeutic agents.  相似文献   
85.
Caloric excess has been postulated to disrupt cardiac function via (i) the generation of toxic intermediates, (ii) via protein glycosylation and (iii) through the generation of reactive oxygen species. It is now increasingly being recognized that the nutrient intermediates themselves may modulate metabolic pathways through the post-translational modifications of metabolic enzymes. In light of the high energy demand of the heart, these nutrient mediated modulations in metabolic pathway functioning may play an important role in cardiac function and in the capacity of the heart to adapt to biomechanical stressors. In this review the role of protein acetylation and deacetylation in the control of metabolic programs is explored. Although not extensively investigated directly in the heart, the emerging data support that these nutrient mediated post-translational regulatory events (i) modulate cardiac metabolic pathways, (ii) integrate nutrient flux mediated post-translational effects with cardiac function and (iii) may be important in the development of cardiac pathology. Areas of investigation that need to be explored are highlighted. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   
86.
87.
Stomata are crucial for the productivity and survival of land plants. Until recently, little was known about the events and molecular pathways required for stomatal development. Emerging data indicate that cell-cell signaling conveys spatial information about cell identity and location. Such information might pattern stomata by orienting the plane of asymmetric division and might control stomatal number by regulating division frequency. This pathway also provides an accessible model system for studying post-apical meristem stem cells that generate specific tissues.  相似文献   
88.
Structure-activity studies of 1H-pyrazolo[3,4-b]pyridine 1 have resulted in the discovery of potent CDK1/CDK2 selective inhibitor 21h, BMS-265246 (CDK1/cycB IC(50)=6 nM, CDK2/cycE IC(50)=9 nM). The 2,6-difluorophenyl substitution was critical for potent inhibitory activity. A solid state structure of 21j, a close di-fluoro analogue, bound to CDK2 shows the inhibitor resides coincident with the ATP purine binding site and forms important H-bonds with Leu83 on the protein backbone.  相似文献   
89.
90.
Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named “autophagy”, enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号