首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1496篇
  免费   139篇
  国内免费   1篇
  1636篇
  2022年   16篇
  2021年   15篇
  2020年   13篇
  2019年   25篇
  2018年   16篇
  2017年   14篇
  2016年   22篇
  2015年   46篇
  2014年   57篇
  2013年   59篇
  2012年   68篇
  2011年   78篇
  2010年   47篇
  2009年   48篇
  2008年   51篇
  2007年   58篇
  2006年   60篇
  2005年   54篇
  2004年   56篇
  2003年   54篇
  2002年   46篇
  2001年   40篇
  2000年   50篇
  1999年   35篇
  1998年   19篇
  1997年   20篇
  1996年   16篇
  1995年   11篇
  1994年   14篇
  1993年   12篇
  1992年   23篇
  1991年   27篇
  1990年   27篇
  1989年   25篇
  1988年   32篇
  1987年   33篇
  1986年   32篇
  1985年   34篇
  1984年   36篇
  1983年   26篇
  1982年   13篇
  1981年   14篇
  1980年   13篇
  1979年   22篇
  1977年   18篇
  1975年   11篇
  1973年   14篇
  1971年   10篇
  1970年   11篇
  1968年   11篇
排序方式: 共有1636条查询结果,搜索用时 15 毫秒
81.
When the osmolality of the bathing medium was increased from 710 to 2000 mosmol/kg H2O, cells in incubated slices of rat renal inner medulla lost water and K+, and the rate of efflux of preloaded 86Rb+ (a tracer for K+) was significantly depressed. Addition of 2-aminoisobutyric acid (AIB, 10 mmol/l) partly restored cell water content but without re-accumulation of K+; the rate of 86Rb+ efflux was greatly increased. The presence of Ba2+ (1 mmol/l) or trifluoperazine (50 mumol/l) led to complete recovery of cell volume and K+ contents, with markedly reduced efflux of 86Rb+. Neither additive had any significant effect upon these variables in the absence of AIB or in media of 710 mosmol/kg. Efflux of 86Rb+ was pH-sensitive within the physiological range, and was depressed when external AIB was reduced below approx. 5 mmol/l. When external Na+ was increased from 145 to 500 mmol/l (total osmolality 350 to 2500 mosmol/kg) efflux was retarded only slightly if AIB was present, but markedly if AIB was omitted. Inner medullary cells may contain a class of Ba(2+)-inhibitable, calmodulin-dependent K+ conductive pathway which is activated in strongly hyperosmotic media by the operation of an inwardly-directed Na(+)-amino acid symport (cf. Law, R.O. (1988) Pflügers Arch. 413, 43-50) and which serves to moderate the volume-restorative effect of this membrane mechanism.  相似文献   
82.
We show that both the lipopolysaccharide (LPS)-induced activation of NF-kappa DNA binding and kappa gene expression are blocked by treating murine pre-B lymphocyte 70Z/3 cells with 5'-methylthioadenosine (MTA), an inhibitor of several S-adenosylmethionine-dependent methylation reactions. We further show that the LPS-induced incorporation of radioactivity from [methyl-3H]methionine into methyl ester-like linkages on a group of membrane polypeptides is also inhibited by MTA treatment, suggesting the involvement of protein methylation reactions in the LPS signal transduction pathway. We also find that NF-kappa B and kappa gene activation in LPS-treated 70Z/3 cells is blocked by mevinolin, an inhibitor that prevents protein isoprenylation. Interestingly, mevinolin-treated cells also exhibited a marked reduction in the methylation of membrane proteins. Neither MTA nor mevinolin significantly inhibited NF-kappa B activation by phorbol myristate acetate, suggesting that these agents act early in signal transduction. These results provide the first evidence that carboxyl methylated and/or isoprenylated proteins play an essential role in the LPS-signaling pathway.  相似文献   
83.
Integrins are modular (alphabeta) heterodimeric proteins that mediate cell adhesion and convey signals across the plasma membrane. Interdomain motions play a key role in signal transduction by propagating structural changes through the molecule, thus controlling the activation state and adhesive properties of the integrin. We expressed a soluble fragment of the human integrin beta2 subunit comprising the plexin-semaphorin-integrin domain (PSI)/hybrid domain/I-EGF1 fragment and present its crystal structure at 1.8-A resolution. The structure reveals an elongated molecule with a rigid architecture stabilized by nine disulfide bridges. The PSI domain is located centrally and participates in the formation of extended interfaces with the hybrid domain and I-EGF1 domains, respectively. The hybrid domain/PSI interface involves the burial of an Arg residue, and contacts between PSI and I-EGF1 are mainly mediated by well conserved Arg and Trp residues. Conservation of key interacting residues across the various integrin beta subunits sequences suggests that our structure represents a good model for the entire integrin family. Superposition with the integrin beta3 receptor in its bent conformation suggests that an articulation point is present at the linkage between its I-EGF1 and I-EGF2 modules and underlines the importance of this region for the control of integrin-mediated cell adhesion.  相似文献   
84.
Summary The possible induction of renal citrate synthase (E.C. 4.1.3.7), by aldosterone was evaluated in the adrenalectomized rat. Three hours after administration of aldosterone (0.8 g/100 g body wt), renal cortical and medullary citrate synthase activity was significantly increased as reported previously by Kinne and Kirsten (Kinne, R., Kirsten, R. 1968.Pfleugers Arch. 300:244). In contrast, no change in this activity was detected in the renal papilla or the liver, under the same conditions. Kinetic analysis revealed that injection of aldosterone had no effect on theK m s for acetyl-CoA and oxalacetate but augmentedV max of renal medullary citrate synthase activity by 40%. The aldosterone-dependent increase in medullary citrate synthase activity was proportionate to the associated increase in the quantity of antiserum (specific for citrate synthase) required for half-maximal immuno-precipitation.The possibility that aldosterone induced the synthesis of citrate synthase was evaluated in two sets of experiments. In the first set, adrenalectomized rats were injected intraperitoneally with either aldosterone (0.8 g/100 g body wt) or the diluent, and simultaneously with3H or35S methionine (500 Ci/rat). The isotopes were reversed in about half of the experiments. Three hours after the injection, renal citrate synthase was isolated by ATP-sepharose column chromatography and immuno-precipitation with the specific antiserum. Aldosterone augmented methionine incorporation into renal citrate synthase by 55% but had no effect on incorporation into the hepatic enzyme. In the second set, adrenalectomized rats were injected with either aldosterone (0.8 g/100 g body wt) or the diluent, the kidneys were removed 1 hr later and medullary slices were incubated in either3H-or35S-methionine at 20° for 2 hr. Mitochondrial citrate synthase was isolated either by ATP-sepharose column chromatography and immuno-precipitation, or by polyacrylamide gel electrophoresis. Aldosterone increased methionine incorporation into the immuno-precipitates by 30% and into the enzyme peak resolved by polyacrylamide gel electrophoresis by 43%. The latter increase was eliminated by prior administration of either actinomycin D (70–80 g/100 g body wt) or spirolactone (SC-26304) (80 g/100 g body wt). An equimolar dose of dexamethasone (0.8 g/100 g body wt) had no effect on the isotope ratio associated with citrate synthase activity in the polyacrylamide gels.  相似文献   
85.
DNA methylation is an evolutionarily conserved epigenetic modification that is critical for gene silencing and the maintenance of genome integrity. In Arabidopsis thaliana, the de novo DNA methyltransferase, domains rearranged methyltransferase 2 (DRM2), is targeted to specific genomic loci by 24 nt small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). Biogenesis of the targeting siRNAs is thought to be initiated by the activity of the plant-specific RNA polymerase IV (Pol-IV). However, the mechanism through which Pol-IV is targeted to specific genomic loci and whether factors other than the core Pol-IV machinery are required for Pol-IV activity remain unknown. Through the affinity purification of nuclear RNA polymerase D1 (NRPD1), the largest subunit of the Pol-IV polymerase, we found that several previously identified RdDM components co-purify with Pol-IV, namely RNA-dependent RNA polymerase 2 (RDR2), CLASSY1 (CLSY1), and RNA-directed DNA methylation 4 (RDM4), suggesting that the upstream siRNA generating portion of the RdDM pathway may be more physically coupled than previously envisioned. A homeodomain protein, SAWADEE homeodomain homolog 1 (SHH1), was also found to co-purify with NRPD1; and we demonstrate that SHH1 is required for de novo and maintenance DNA methylation, as well as for the accumulation of siRNAs at specific loci, confirming it is a bonafide component of the RdDM pathway.  相似文献   
86.
Protein motions in the Cys-loop ligand-gated ion receptors that govern the gating mechanism are still not well understood. The details as to how motions in the ligand-binding domain are translated to the transmembrane domain and how subunit rotations are linked to bring about the cooperative movements involved in gating are under investigation. Homology models of the α4β2 nicotinic acetylcholine (nACh) and β2α1γ2 GABA receptors were constructed based on the torpedo neuromuscular-like nicotinic receptor structure. The template constructed for the full electron microscopy structure must be considered more reliable for structure-function studies due to the preservation of the E45-R209 salt-link. Many other salt-links are seen to transiently form, including switching off of the E45-R209 link, within a network of potential salt-links at the binding domain to the transmembrane domain interface region. Several potentially important intersubunit salt-links form in both the nAChR and GABAR structures during the simulation and appear conserved across many subunit combinations, such as the salt-link between α4.E262 and β2.K255 in nAChR (β2.E262 and α1.K263 in GABAR), at the top of the pore-lining M2 helices, and the intersubunit link of R210 on the M1-linker to E168 on the β8-sheet of the adjacent subunit in the GABA receptor (E175-K46 being the structurally equivalent link in the nAChR, with reversed polarity). A network of other salt-links may be vital for transmitting the cooperative gating motions between subunits that become biased upon ligand binding. The changes seen in the simulations suggest that this network of salt-links helps to set limits and specific states for the conformational changes involved in gating of the receptor. We hope that these hypotheses will be tested experimentally in the near future.  相似文献   
87.
Spherical, well-defined core-shell nanoparticles that consist of poly(methyl methacrylate) (PMMA) cores and branched poly(ethylenimine) shells (PEI) were synthesized via a graft copolymerization of methyl methacrylate from branched PEI induced by a small amount of tert-butyl hydroperoxide. The PMMA-PEI core-shell nanoparticles were between 130 to170 nm in diameter and displayed zeta-potentials near +40 mV at pH 7 in 1 mM aqueous NaCl. Plasmid DNA (pDNA) was mixed with nanoparticles and formed complexes of approximately 120 nm in diameter and was highly monodispersed. The complexes were characterized with respect to their particle size, zeta-potential, surface morphology, and DNA integrity. The complexing ability of the nanoparticles was strongly dependent on the molecular weight of the PEI and the thickness of the PEI shells. The stability of the complexes was influenced by the loading ratio of the pDNA and the nanoparticles. The condensed pDNA in the complexes was significantly protected from enzymatic degradation by DNase I. Cytotoxity studies using MTT colorimetric assays suggested that the PMMA-PEI (25 kDa) core-shell nanoparticles were three times less toxic than the branched PEI (25 kDa). Their transfection efficiencies were also significantly higher. Thus, the PEI-based core-shell nanoparticles show considerable potential as carriers for gene delivery.  相似文献   
88.
89.
Embryonic stem cells (ESCs) can self-renew indefinitely and differentiate into all cell lineages. Calcium is a universal second messenger which regulates a number of cellular pathways. Previous studies showed that store-operated calcium channels (SOCCs) but not voltage-operated calcium channels are present in mouse ESCs (mESCs). In this study, store-operated calcium entry (SOCE) was found to exist in mESCs using confocal microscopy. SOCC blockers lanthanum, 2-aminoethoxydiphenyl borate (2-APB) and SKF-96365 reduced mESC proliferation in a concentration-dependent manner, suggesting that SOCE is important for ESC proliferation. Pluripotent markers, Sox-2, Klf-4, and Nanog, were down-regulated by 2-APB, suggesting that self-renewal property of mESCs relies on SOCE. 17β-estradiol (E2) enhanced mESC proliferation. This enhanced proliferation was associated with an increment of SOCE. Both stimulated proliferation and increased SOCE could be reversed by SOCC blockers suggesting that E2 mediates its stimulatory effect on proliferation via enhancing SOCE. Also, cyclosporin A and INCA-6, inhibitors of calcineurin [phosphatase that de-phosphorylates and activates nuclear factor of activated T-cells (NFAT)], reversed the proliferative effect of E2, indicating that NFAT is involved in E2-stimulated proliferation. Interestingly, E2 caused the nuclear translocation of NFATc4, and this could be reversed by 2-APB. These results suggested that NFATc4 is the downstream target of E2-induced SOCE. The present investigation provides the first line of evidence that SOCE and NFAT are crucial for ESCs to maintain their unique characteristics. In addition, the present investigation also provides novel information on the mechanisms of how E2, an important female sex hormone, affects ESC proliferation.  相似文献   
90.
On the evolution of non-specific mutualism   总被引:2,自引:0,他引:2  
It has been argued that mutualisms are non-specific when mutualistic interactions are weak and transient, and become more specific as interactions increase in strength. However, this runs counter to the observation that there exist tightly linked mutualisms of great antiquity that are highly nonspecific. Here we argue that mutualism generates positive, interspecific, frequency-dependent selection, which acts as a cohesive evolutionary force, discouraging evolution of specificity. A simple mathematical model is constructed to analyse the evolution of a community consisting of two guilds of species with mutualistic between-guild interactions, two competing species in each guild and two genetically distinct phenotypes within each species. With some simplifying assumptions, the trajectories in the neighbourhood of the only interior equilibrium point are determined analytically in terms of interactions between individuals. These show that the equilibrium is locally stable (no evolution) when there is little differentiation between phenotypes in mutualistic and interspecific, competitive interactions. On the other hand, when there is strong differentiation between phenotypes in their mutualistic interactions, the equilibrium is unstable and the community starts to evolve towards non-specificity. There are, however, two forces counteracting this tendency which, if sufficiently potent, cause evolution towards specificity. The first is generated by strong differentiation between phenotypes in interspecific competition; the second is caused by specificity which already exists between species in their mutualistic interactions. Thus, the tendency for non-specificity or specificity to evolve depends on the interplay between antagonistic and mutualistic interactions in the community. We illustrate these results with some numerical examples and, finally, survey some data on specificity of mutualisms in the light of the analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号