首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   43篇
  国内免费   2篇
  2023年   3篇
  2022年   20篇
  2021年   38篇
  2020年   16篇
  2019年   23篇
  2018年   34篇
  2017年   25篇
  2016年   31篇
  2015年   38篇
  2014年   40篇
  2013年   62篇
  2012年   62篇
  2011年   58篇
  2010年   33篇
  2009年   31篇
  2008年   40篇
  2007年   40篇
  2006年   38篇
  2005年   30篇
  2004年   25篇
  2003年   32篇
  2002年   20篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1987年   1篇
  1986年   5篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有776条查询结果,搜索用时 31 毫秒
11.
Non-lethal methods of tissue sampling are increasingly used for genetic studies of insect species and the effects of this approach have long been assumed to be minimal. Tissue removal has the potential to influence insect reproductive behaviours such as mate recognition, courtship or oviposition but the effects of non-lethal sampling on reproductive success have not been widely and adequately tested. Here, we test potential effects of both wing-clipping and leg removal on reproductive behaviours of the cabbage white butterfly (Pieris rapae). We conducted a total of 93 male and 59 female mating trials, and found no significant differences in mating success between treated (i.e., tissue removed) and control individuals in either sex. We also monitored the number and location of eggs laid by 58 females. We found no significant differences in egg-laying behaviour among leg removed and control individuals. Power analysis indicated that we had sufficient statistical power to detect moderate effects of treatment on both mating and oviposition. Our study provides the most comprehensive examination to date of the effects of non-lethal sampling on reproductive behaviours in a butterfly/insect species, and supports the contention that tissue sampling is non-detrimental. To fully comprehend the general impacts of tissue sampling on butterfly reproductive behaviour however, additional similar studies need to be conducted on a variety of species with differing mating behaviours. Only through meta-analysis, may it be possible to detect more subtle effects of tissue removal which cannot be revealed within a single study due to sample size limitations.  相似文献   
12.
The pedicel is a structure that connects the phoretic deutonymph of Uropodina mites with its carrier and enables dispersal. The shapes, lengths and diameters of pedicels formed by Uropoda orbicularis, Trichouropoda ovalis, Uroobovella pulchella and Uroobovella nova were studied by scanning and light microscopy. Pedicels of U. orbicularis and T. ovalis have the shape of a straight stalk. In U. pulchella, the pedicel is extremely short, irregularly shaped and composed of homogeneous material. The longest pedicel is found in U. nova and it may be helically coiled in this species. The length of the pedicel is positively correlated with deutonymph body size between species, but not within species. Pedicels of U. orbicularis and U. pulchella have the largest diameter. The pedicel diameter in U. orbicularis and T. ovalis is inversely proportional to its length, but not in U. nova and U. pulchella. The constituent of pedicel stems in U. pulchella is homogeneous, whereas in U. orbicularis and T. ovalis it contains a bundle of tightly packed fibres. In U. nova coiled pedicels are comprised of two layered materials of different electron density, one of which is electron lucid and located peripherally. Hypotheses on the origin of the pedicel are proposed.  相似文献   
13.

Purpose

Pluronic block copolymers are potent sensitizers of multidrug resistant cancers. SP1049C, a Pluronic-based micellar formulation of doxorubicin (Dox) has completed Phase II clinical trial and demonstrated safety and efficacy in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. This study elucidates the ability of SP1049C to deplete cancer stem cells (CSC) and decrease tumorigenicity of cancer cells in vivo.

Experimental Design

P388 murine leukemia ascitic tumor was grown in BDF1 mice. The animals were treated with: (a) saline, (b) Pluronics alone, (c) Dox or (d) SP1049C. The ascitic cancer cells were isolated at different passages and examined for 1) in vitro colony formation potential, 2) in vivo tumorigenicity and aggressiveness, 3) development of drug resistance and Wnt signaling activation 4) global DNA methylation profiles, and 5) expression of CSC markers.

Results

SP1049C treatment reduced tumor aggressiveness, in vivo tumor formation frequency and in vitro clonogenic potential of the ascitic cells compared to drug, saline and polymer controls. SP1049C also prevented overexpression of BCRP and activation of Wnt-β-catenin signaling observed with Dox alone. Moreover, SP1049C significantly altered the DNA methylation profiles of the cells. Finally, SP1049C decreased CD133+ P388 cells populations, which displayed CSC-like properties and were more tumorigenic compared to CD133 cells.

Conclusions

SP1049C therapy effectively suppresses the tumorigenicity and aggressiveness of P388 cells in a mouse model. This may be due to enhanced activity of SP1049C against CSC and/or altered epigenetic regulation restricting appearance of malignant cancer cell phenotype.  相似文献   
14.
Plant Cell, Tissue and Organ Culture (PCTOC) - Somatic embryogenesis is a biotechnological tool with high application potential in the in vitro propagation and regeneration of crop plants, such as...  相似文献   
15.
Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods.  相似文献   
16.

Background

A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment.

Results

Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP.

Conclusions

We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.  相似文献   
17.
Specific activation of amino acids by aminoacyl-tRNA synthetases (aaRSs) is essential for maintaining fidelity during protein translation. Here, we present crystal structure of malaria parasite Plasmodium falciparum tryptophanyl-tRNA synthetase (Pf-WRS) catalytic domain (AAD) at 2.6 Å resolution in complex with L-tryptophan. Confocal microscopy-based localization data suggest cytoplasmic residency of this protein. Pf-WRS has an unusual N-terminal extension of AlaX-like domain (AXD) along with linker regions which together seem vital for enzymatic activity and tRNA binding. Pf-WRS is not proteolytically processed in the parasites and therefore AXD likely provides tRNA binding capability rather than editing activity. The N-terminal domain containing AXD and linker region is monomeric and would result in an unusual overall architecture for Pf-WRS where the dimeric catalytic domains have monomeric AXDs on either side. Our PDB-wide comparative analyses of 47 WRS crystal structures also provide new mechanistic insights into this enzyme family in context conserved KMSKS loop conformations.  相似文献   
18.
19.
Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2. However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes.Pollen tube growth provides a unique model system for studying the role of exocytosis in cell morphogenesis. Pollen tubes are characterized by a highly rapid polarized unidirectional tip growth. Given the relative simplicity of their structure, fast growth rates, haploid genome content, and ability to grow under in vitro culture conditions, pollen tubes provide an extremely attractive system for studying cell morphogenesis. Furthermore, the growth characteristics of pollen tubes resemble those of root hairs, moss protonema, and fungal hyphae and to some extent can be paralleled to neurite growth (Chebli and Geitmann, 2007; Cheung and Wu, 2008; Guan et al., 2013; Hepler and Winship, 2015).It is well established that oscillating polarized exocytosis is fundamental for pollen tube development and determines growth rate (Bove et al., 2008; McKenna et al., 2009; Chebli et al., 2013). Exocytosis is required for the delivery of membrane and cell wall components to the growing tip. Yet, the exact location where exocytosis takes place is under debate. Ultrastructural studies showing the accumulation of vesicles at the tip suggested that exocytosis takes place at the tip (Lancelle et al., 1987; Lancelle and Hepler, 1992; Derksen et al., 1995), which was further supported by studies on the dynamics of cell wall thickness (Rojas et al., 2011), secretion of pectin methyl esterase (PME) and PME inhibitor, and staining of pectin by propidium iodide (PI; Röckel et al., 2008; Rounds et al., 2014). Conversely, based on colabeling with FM1-43 and FM4-64, it was concluded that exocytosis takes place in a subapical collar located in the transition zone between the tip and the shank, as well as at the shank, but not at the tip (Bove et al., 2008; Zonia and Munnik, 2008). In agreement, the pollen tube-specific syntaxin GFP-SYP124 was observed in the inverted cone, 10 to 25 μm away from the tip (Silva et al., 2010), and fluorescence recovery after photobleaching experiments with FM dyes also have indicated that exocytosis takes place at the subapical region (Bove et al., 2008; Moscatelli et al., 2012; Idilli et al., 2013). Yet, based on pollen tube reorientation experiments in a microfluidics device, it was concluded that growth takes place at the tip rather than at a subapical collar located in the transition zone between the apex and the shank (Sanati Nezhad et al., 2014). The tip-based growth is in agreement with exocytosis taking place at the tip. Presumably, part of the disagreement regarding the site of exocytosis resulted from the lack of intracellular markers for exocytosis (Cheung and Wu, 2008; Hepler and Winship, 2015), and as a result, the relationship between the FM dye-labeled inverted cone and exocytotic events during pollen tube growth is not fully understood.In many cell types, the process of secretory vesicles tethering and docking prior to fusion with the plasma membrane is initially mediated by an evolutionarily conserved tethering complex known as the exocyst. The exocyst is a heterooligomeric protein complex composed of eight subunits, SEC3, SEC5, SEC6, SEC8, SEC10, SEC15, EXO70, and EXO84 (TerBush et al., 1996; Guo et al., 1999). Studies originally based on budding yeast (Saccharomyces cerevisiae) have shown that the exocyst functions as an effector of Rab and Rho small GTPases that specifies the sites of vesicle docking and fusion at the plasma membrane in both space and time (Guo et al., 2001; Zhang et al., 2001). Support for the function of the exocyst in vesicle tethering was demonstrated recently by ectopic Sec3p-dependent vesicle recruitment to the mitochondria (Luo et al., 2014).Land plants contain all subunits of the exocyst complex, which were shown to form the functional complex (Elias et al., 2003; Cole et al., 2005; Synek et al., 2006; Hála et al., 2008). Studies in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) have implicated the exocyst in the regulation of pollen tube and root hair growth, seed coat deposition, response to pathogens, cytokinesis, and meristem and stigma function (Cole et al., 2005; Synek et al., 2006; Hála et al., 2008; Fendrych et al., 2010; Kulich et al., 2010; Pecenková et al., 2011; Safavian and Goring, 2013; Wu et al., 2013; Safavian et al., 2015; Zhang et al., 2016). The growth arrest of pollen tubes in sec8, sec6, sec15a, and sec5a/sec5b single and double mutants (Cole et al., 2005; Hála et al., 2008) or following treatment with the EXO70 inhibitor ENDOSIDIN2 (Zhang et al., 2016), and of root hairs in maize root hairless1 (rth1) SEC3 mutant (Wen et al., 2005), the inhibition of seed coat deposition in the sec8 and exo70A1 mutants (Kulich et al., 2010), and stigmatic papillae function in exo70A1 mutant plants (Safavian and Goring, 2013; Safavian et al., 2015) have implicated the exocyst in polarized exocytosis in plants. Given their function, it was likely that exocyst subunits could be used as markers for polarized exocytosis. Furthermore, it could also be hypothesized that, by studying the mechanisms that underlie the association of the exocyst complex with the plasma membrane, it should be possible to identify mechanisms underlying the regulation of polarized exocytosis (Guan et al., 2013). Moreover, since the interaction of exocytotic vesicles with the exocyst is transient and marks the site(s) of active exocytosis in the membrane, fluorescently labeled exocyst subunits could be used as markers for exocytosis while avoiding potential imaging artifacts stemming from pollen tube tips densely populated with vesicles.We have shown previously that the ROP effector ICR1 can interact with SEC3a and that ROPs can recruit SEC3a-ICR1 complexes to the plasma membrane (Lavy et al., 2007). However, ICR1 is not expressed in pollen tubes, suggesting that SEC3a membrane binding in these cells is likely dependent on other factors. In yeast, the interaction of Sec3p and Exo70p subunits with the plasma membrane is critical for exocyst function (He and Guo, 2009). It has been shown that the membrane binding of both Sec3p and Exo70p is facilitated by their interaction with phosphatidylinositol 4,5-bisphosphate (PIP2; He et al., 2007; Zhang et al., 2008). The yeast Exo70p interacts with PIP2 via a number of positively charged residues distributed along the protein, with the highest number located at the C-terminal end (Pleskot et al., 2015). It has been suggested that yeast Sec3p interacts with PIP2 through N-terminal basic residues (Zhang et al., 2008). These data were further corroborated by x-ray crystallography studies, which showed that the yeast Sec3p N-terminal region forms a Pleckstrin homology (PH) domain fold (Baek et al., 2010; Yamashita et al., 2010), a PIP2 interaction motif (Lemmon, 2008).The localization of the exocyst subunits has been addressed in several studies. In Arabidopsis root hairs and root epidermis cells, SEC3a-GFP was observed in puncta distributed throughout the cell (Zhang et al., 2013). Studies on the Arabidopsis EXO70 subunits EXO70E2, EXO70A1, and EXO70B1 revealed them to be localized in distinct compartments that were termed exocyst-positive organelles (Wang et al., 2010). The exocyst-positive organelles, visualized mostly by ectopic expression, were shown to be cytoplasmic double membrane organelles that can fuse with the plasma membrane and secrete their contents to the apoplast in an exosome-like manner. It is not yet known whether other exocyst subunits also are localized to the same organelles and what might be the biological function of this putative compartment (Wang et al., 2010; Lin et al., 2015). In differentiating xylem cells, two coiled-coil proteins termed VESICLE TETHERING1 and VESICLE TETHERING2 recruit EXO70A1-positive puncta to microtubules via the GOLGI COMPLEX2 protein (Oda et al., 2015). Importantly, the functionality of the XFP fusion proteins used for the localization studies described above was not tested, and in most cases, the fusion proteins were overexpressed. Therefore, the functional localization of the exocyst is still unclear.Here, we studied the function and subcellular localization of the Arabidopsis exocyst SEC3a subunit using a combination of genetics, cell biology, biochemistry, and structural modeling approaches. Our results show that SEC3a is essential for the determination of pollen tube tip germination site and growth. Partial complementation of sec3a resulted in the formation of pollen with multiple pollen tube tips. In Arabidopsis growing pollen tubes, SEC3a localization is dynamic, and it accumulates in domains of polarized secretion, at or close to the tip plasma membrane (PM). Labeling of GFP-SEC3-expressing pollen with FM4-64 revealed the spatial correlation between polarized exocytosis and endocytic recycling. Furthermore, the association of SEC3a with PM at the tip marks the direction of tube elongation and positively correlates with the deposition of PI-labeled pectins and specific anti-esterified pectin antibodies in the cell wall. In tobacco (Nicotiana tabacum), the mechanisms underlying SEC3a interaction with the PM and its subcellular distribution depend on pollen tube growth mode and involve the interaction with PIP2 through the N-terminal PH domain. Collectively, our results highlight the function of SEC3a as a polarity determinant that links between polarized exocytosis and cell morphogenesis. The correlation between exocyst function and distribution in pollen tubes provides an explanation for some of the current discrepancies regarding the localization of exocytosis.  相似文献   
20.
Recent developments indicate that the regeneration of beta cell function and mass in patients with diabetes is possible. A regenerative approach may represent an alternative treatment option relative to current diabetes therapies that fail to provide optimal glycemic control. Here we report that the inactivation of GSK3 by small molecule inhibitors or RNA interference stimulates replication of INS-1E rat insulinoma cells. Specific and potent GSK3 inhibitors also alleviate the toxic effects of high concentrations of glucose and the saturated fatty acid palmitate on INS-1E cells. Furthermore, treatment of isolated rat islets with structurally diverse small molecule GSK3 inhibitors increases the rate beta cell replication by 2-3-fold relative to controls. We propose that GSK3 is a regulator of beta cell replication and survival. Moreover, our results suggest that specific inhibitors of GSK3 may have practical applications in beta cell regenerative therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号