首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   49篇
  601篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   12篇
  2016年   12篇
  2015年   19篇
  2014年   25篇
  2013年   11篇
  2012年   22篇
  2011年   28篇
  2010年   19篇
  2009年   25篇
  2008年   25篇
  2007年   30篇
  2006年   14篇
  2005年   12篇
  2004年   18篇
  2003年   18篇
  2002年   26篇
  2001年   18篇
  2000年   8篇
  1999年   13篇
  1998年   19篇
  1997年   12篇
  1996年   10篇
  1995年   16篇
  1994年   4篇
  1993年   7篇
  1992年   11篇
  1991年   9篇
  1990年   15篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   13篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   8篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1972年   3篇
  1955年   2篇
排序方式: 共有601条查询结果,搜索用时 15 毫秒
41.
The machinery mediating chromosome condensation is poorly understood. To begin to dissect the in vivo function(s) of individual components, we monitored mitotic chromosome structure in mutants of condensin, cohesin, histone H3, and topoisomerase II (topo II). In budding yeast, both condensation establishment and maintenance require all of the condensin subunits, but not topo II activity or phospho-histone H3. Structural maintenance of chromosome (SMC) protein 2, as well as each of the three non-SMC proteins (Ycg1p, Ycs4p, and Brn1p), was required for chromatin binding of the condensin complex in vivo. Using reversible condensin alleles, we show that chromosome condensation does not involve an irreversible modification of condensin or chromosomes. Finally, we provide the first evidence of a mechanistic link between condensin and cohesin function. A model discussing the functional interplay between cohesin and condensin is presented.  相似文献   
42.
Fourier transform infrared (FTIR) spectroscopy was used to investigate the secondary structure of pediocin PA-1 in different aqueous media in relation to its antimicrobial activity. The experiments were performed at pD (pH meter corrected for deuterium isotope effect) 6, 7, and 8 and during a heating-cooling cycle of 20-80 degrees C. At pD 6, (i.e. pediocin's most active form), the FTIR results show that pediocin adopts an unordered structure with a small contribution of beta-turn. After a heating-cooling cycle, thermally-induced changes in pediocin are reversed and its activity is maintained. Increasing the pD to 7 and 8 leads to a more ordered secondary structure. For these two pD values, an increase in temperature induces an irreversible aggregation of protein as revealed by the amide I' band. The analysis of the Tyr region provides more insight into the aggregation process. In fact, it appears to be a two-step process, involving first the C (carboxy)-terminus of pediocin and then the N (amino)-terminus. This study reveals two major points: (1) the preservation of pediocin flexibility is essential for maintaining its activity; and (2) the aggregation of its C-terminus is sufficient to induce a loss of activity, suggesting that this region plays an important role in the activity of pediocin.  相似文献   
43.
44.
Synthetic iron oxides (goethite, -FeO·OH; hematite, Fe2O3; and ferrihydrite, Fe(OH)3) were used as model compounds to simulate the mineralogy of surface films on carbon steel. Dissolution of these oxides exposed to pure cultures of the metal-reducing bacterium, Shewanella putrefaciens, was followed by direct atomic absorption spectroscopy measurement of ferrous iron coupled with microscopic analyses using confocal laser scanning and environmental scanning electron microscopies. During an 8-day exposure the organism colonized mineral surfaces and reduced solid ferric oxides to soluble ferrous ions. Elemental composition, as monitored by energy dispersive x-ray spectroscopy, indicated mineral replacement reactions with both ferrihydrite and goethite as iron reduction occurred. When carbon steel electrodes were exposed to S. putrefaciens, microbiologically influenced corrosion was demonstrated electrochemically and microscopically.  相似文献   
45.
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.  相似文献   
46.
The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC) and portal fibroblasts (PF). In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5’-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myo)fibroblasts and their contribution to the progression of liver fibrosis.  相似文献   
47.
Extracellular ATP and its hydrolysis product adenosine modulate various reproductive functions such as those requiring contraction, steroidogenesis, and maintenance of fluid composition. Interestingly, adenosine might act as a key capacitative effector for mammalian spermatozoa to acquire the capacity for fertilisation. Extracellular nucleotide levels are affected by cell surface ectonucleotidases, amongst which the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family regroups the most abundant and effective enzymes to hydrolyse ATP and ADP to AMP in physiological conditions. In the male reproductive tract three members of this family have been indentified: NTPDase1, NTPDase2 and NTPDase3 (Martín-Satué et al. in Histochem Cell Biol 131:615–628, 2009). The purpose of the present study was to characterize in the male reproductive tract the expression profile of the main enzyme responsible for the generation of adenosine from AMP, namely the ecto-5′-nucleotidase (CD73). The enzyme was identified by immunological techniques and by in situ enzymatic assays, including inhibition experiments with α,β-methylene-ADP, a specific CD73 inhibitor. High levels of ecto-5′-nucleotidase were detected in testes in association with both germinal and somatic cells, in smooth muscle cells throughout the tract, in secretory epithelia from exocrine glands, and remarkably, in principal cells of epididymis, where co-localization with NTPDase3 was found. The relevance of this co-expression on nucleotide hydrolysis in these cells directly involved in the control of sperm fluid composition was addressed biochemically. This study suggests close regulation of extracellular nucleoside and nucleotide levels in the genital tract by ecto-5′-nucleotidase that, in concurrence with NTPDases, may impact male fertility.  相似文献   
48.
49.
50.

Background  

Tenascins are a family of glycoproteins found primarily in the extracellular matrix of embryos where they help to regulate cell proliferation, adhesion and migration. In order to learn more about their origins and relationships to each other, as well as to clarify the nomenclature used to describe them, the tenascin genes of the urochordate Ciona intestinalis, the pufferfish Tetraodon nigroviridis and Takifugu rubripes and the frog Xenopus tropicalis were identified and their gene organization and predicted protein products compared with the previously characterized tenascins of amniotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号