首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   18篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   10篇
  2015年   22篇
  2014年   20篇
  2013年   29篇
  2012年   28篇
  2011年   26篇
  2010年   24篇
  2009年   9篇
  2008年   11篇
  2007年   21篇
  2006年   12篇
  2005年   6篇
  2004年   8篇
  2003年   10篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1967年   4篇
  1966年   1篇
  1963年   1篇
  1960年   1篇
  1957年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
51.
The complete set of the 4'-aza analogues of 2',3'-dideoxynucleosides was synthesized by cycloaddition of N-tetrahydropiranyl or N-trityl methylene nitrones on suitably protected vinyl nucleobases. The convertible nucleoside approach was used in the preparation of cytosine and 5-methyl cytosine analogues.  相似文献   
52.
53.
The inherent toxicity of many metal compounds, together with their widespread environmental distribution, raises concerns of potential health hazards. Little is known about the impact of these important environmental toxicants on adult stem/progenitor cells, necessary for tissue homeostasis and repair. We recently reported that autophagy is implicated in the response of hematopoietic stem/progenitor cells to toxic concentrations of hexavalent chromium (Cr[VI]) and cadmium (Cd), two well known carcinogenic heavy metal cations. Autophagy may lead to cell death if carried out too extensively, but also acts as a survival pathway in cells under stress. In stem/progenitor cells, an autophagic phenotype could mitigate metal-induced toxicity, contributing to the conservation of tissue renewal capability. Given the key role of toxic damage to adult stem/progenitor cells in cancer, it is necessary to investigate whether autophagic responses modulate the carcinogenic potential of exposure to heavy metals during stem/progenitor cell differentiation.  相似文献   
54.
Reactive oxygen species (ROS) have traditionally been viewed as a toxic group of molecules; however, recent publications have shown that these molecules, including H2O2, can also strongly promote cell survival. Even though the retina has a large capacity to produce ROS, little is known about its non-mitochondrial sources of these molecules, in particular the expression and function of NADPH oxidase (Nox) proteins which are involved in the direct generation of superoxide and indirectly H2O2. This study demonstrated that 661W cells, a retina-derived cell line, and mouse retinal explants express Nox2, Nox4 and certain of their well-established regulators. The roles of Nox2 and Nox4 in producing pro-survival H2O2 were determined using 661W cells and some of the controlling factors were identified. To ascertain if this phenomenon could have physiological relevance, the novel technique of time-lapse imaging of dichlorofluorescein fluorescence (generated upon H2O2 production) in retinal explants was established and it showed that explants also produce a burst of H2O2. The increase in H2O2 production was partly blocked by an inhibitor of Nox proteins. Overall, this study demonstrates a pro-survival role of Nox2 and Nox4 in retina-derived cells, elucidates some of the regulatory mechanisms and reveals that a similar phenomenon exists in retinal tissue as a whole.  相似文献   
55.
56.
The field of plant cell wall biology is constantly growing and consequently so is the need for more sensitive and specific probes for individual wall components. Xyloglucan is a key polysaccharide widely distributed in the plant kingdom in both structural and storage tissues that exist in both fucosylated and non-fucosylated variants. Presently, the only xyloglucan marker available is the monoclonal antibody CCRC-M1 that is specific to terminal alpha-1,2-linked fucosyl residues on xyloglucan oligo- and polysaccharides. As a viable alternative to searches for natural binding proteins or creation of new monoclonal antibodies, an approach to select xyloglucan-specific binding proteins from a combinatorial library of the carbohydrate-binding module, CBM4-2, from xylanase Xyn10A of Rhodothermus marinus is described. Using phage display technology in combination with a chemoenzymatic method to anchor xyloglucan to solid supports, the selection of xyloglucan-binding modules with no detectable residual wild-type xylan and beta-glucan-binding ability was achieved.  相似文献   
57.

Background

Homeodomain interacting protein kinase 2 (HIPK2) is an evolutionary conserved serine/threonine kinase whose activity is fundamental in maintaining wild-type p53 function, thereby controlling the destiny of cells when exposed to DNA damaging agents. We recently reported an altered conformational state of p53 in tissues from patients with Alzheimer''s Disease (AD) that led to an impaired and dysfunctional response to stressors.

Methodology/Principal Findings

Here we examined the molecular mechanisms underlying the impairment of p53 activity in two cellular models, HEK-293 cells overexpressing the amyloid precursor protein and fibroblasts from AD patients, starting from recent findings showing that p53 conformation may be regulated by HIPK2. We demonstrated that beta-amyloid 1–40 induces HIPK2 degradation and alters HIPK2 binding activity to DNA, in turn regulating the p53 conformational state and vulnerability to a noxious stimulus. Expression of HIPK2 was analysed by western blot experiments, whereas HIPK2 DNA binding was examined by chromatin immunoprecipitation analysis. In particular, we evaluated the recruitment of HIPK2 onto some target promoters, including hypoxia inducible factor-1α and metallothionein 2A.

Conclusions/Significance

These results support the existence of a novel amyloid-based pathogenetic mechanism in AD potentially leading to the survival of injured dysfunctional cells.  相似文献   
58.
59.

Background

MHC-II restricted CD4+ T cells are dependent on antigen presenting cells (APC) for their activation. APC dysfunction in HIV-infected individuals could accelerate or exacerbate CD4+ T cell dysfunction and may contribute to increased levels of immunodeficiency seen in some patients regardless of their CD4+ T cell numbers. Here we test the hypothesis that APC from HIV-infected individuals have diminished antigen processing and presentation capacity.

Methodology/Principal Findings

Monocytes (MN) were purified by immuno-magnetic bead isolation techniques from HLA-DR1.01+ or DR15.01+ HIV-infected and uninfected individuals. MN were analyzed for surface MHC-II expression and for antigen processing and presentation capacity after overnight incubation with soluble antigen or peptide and HLA-DR matched T cell hybridomas. Surface expression of HLA-DR was 20% reduced (p<0.03) on MN from HIV-infected individuals. In spite of this, there was no significant difference in antigen processing and presentation by MN from 14 HIV-infected donors (8 HLA-DR1.01+ and 6 HLA-DR15.01+) compared to 24 HIV-uninfected HLA-matched subjects.

Conclusions/Significance

We demonstrated that MHC class II antigen processing and presentation is preserved in MN from HIV-infected individuals. This further supports the concept that this aspect of APC function does not further contribute to CD4+ T cell dysfunction in HIV disease.  相似文献   
60.

We analyze the emission yield of the second harmonic generation (SHG) from dense ordered arrays of L-shaped Au nanoantennas within a well-defined collection angle and compare it to that of the isolated nanostructures designed with the same geometrical parameters. Thanks to the high antenna surface density, arrays display one order of magnitude higher SHG yield per unit surface with respect to isolated nanoantennas. The difference in the collected nonlinear signals becomes even more pronounced by reducing the collection angle, because of the efficient angular filtering that can be attained in dense arrays around the zero order. Albeit this key-enabling feature allows envisioning application of these platforms to nonlinear sensing, a normalization of the SHG yield to the number of excited antennas in the array reveals a reduced nonlinear emission from each individual antenna element. We explain this potential drawback in terms of resonance broadening, commonly observed in densely packed arrays, and angular filtering of the single antenna emission pattern provided by the array 0th order.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号