首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   3篇
  2021年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1985年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
Two genes, accB and accE, that form part of the same operon, were cloned from Streptomyces coelicolor A3(2). AccB is homologous to the carboxyl transferase domain of several propionyl coezyme A (CoA) carboxylases and acyl-CoA carboxylases (ACCases) of actinomycete origin, while AccE shows no significant homology to any known protein. Expression of accB and accE in Escherichia coli and subsequent in vitro reconstitution of enzyme activity in the presence of the biotinylated protein AccA1 or AccA2 confirmed that AccB was the carboxyl transferase subunit of an ACCase. The additional presence of AccE considerably enhanced the activity of the enzyme complex, suggesting that this small polypeptide is a functional component of the ACCase. The impossibility of obtaining an accB null mutant and the thiostrepton growth dependency of a tipAp accB conditional mutant confirmed that AccB is essential for S. coelicolor viability. Normal growth phenotype in the absence of the inducer was restored in the conditional mutant by the addition of exogenous long-chain fatty acids in the medium, indicating that the inducer-dependent phenotype was specifically related to a conditional block in fatty acid biosynthesis. Thus, AccB, together with AccA2, which is also an essential protein (E. Rodriguez and H. Gramajo, Microbiology 143:3109–3119, 1999), are the most likely components of an ACCase whose main physiological role is the synthesis of malonyl-CoA, the first committed step of fatty acid synthesis. Although normal growth of the conditional mutant was restored by fatty acids, the cultures did not produce actinorhodin or undecylprodigiosin, suggesting a direct participation of this enzyme complex in the supply of malonyl-CoA for the synthesis of these secondary metabolites.  相似文献   
22.
23.
Pathogenic mycobacteria contain a variety of unique fatty acids that have methyl branches at an even-numbered position at the carboxyl end and a long n-aliphatic chain. One such group of acids, called mycocerosic acids, is found uniquely in the cell wall of pathogenic mycobacteria, and their biosynthesis is essential for growth and pathogenesis. Therefore, the biosynthetic pathway of the unique precursor of such lipids, methylmalonyl coenzyme A (CoA), represents an attractive target for developing new antituberculous drugs. Heterologous protein expression and purification of the individual subunits allowed the successful reconstitution of an essential acyl-CoA carboxylase from Mycobacterium tuberculosis, whose main role appears to be the synthesis of methylmalonyl-CoA. The enzyme complex was reconstituted from the alpha biotinylated subunit AccA3, the carboxyltransferase beta subunit AccD5, and the epsilon subunit AccE5 (Rv3281). The kinetic properties of this enzyme showed a clear substrate preference for propionyl-CoA compared with acetyl-CoA (specificity constant fivefold higher), indicating that the main physiological role of this enzyme complex is to generate methylmalonyl-CoA for the biosynthesis of branched-chain fatty acids. The alpha and beta subunits are capable of forming a stable alpha6-beta6 subcomplex but with very low specific activity. The addition of the epsilon subunit, which binds tightly to the alpha-beta subcomplex, is essential for gaining maximal enzyme activity.  相似文献   
24.
The biological activity of two seven-membered A-ring (A-homo) analogues of progesterone was evaluated by transactivation assays in Cos-1 cells and by determination of Bcl-x(L) expression levels in T47D cells. The results show that both compounds act as selective progesterone receptor (PR) agonists but lack mineralocorticoid receptor (MR) activity. Molecular modelling using semiempirical AM1 and ab initio HF/6-31G** calculations, showed that the A-ring of the A-homo steroids may adopt five different conformations, although only three correspond to low energy conformers. The low energy conformers of each analogue were introduced into the ligand binding pocket of the PR ligand binding domain (LBD) obtained from the PR LBD-progesterone crystal structure. The steroid binding mode was then analyzed using 10 ns of molecular dynamics (MD) simulation. The PR LBD-progesterone complex was also simulated as a control system. The MD results showed that both A-homo steroids have one conformer that may be properly recognized by the PR, in agreement with the observed progestagen activity. Moreover, the simulation revealed the importance of a water molecule in the formation of a hydrogen bonding network among specific receptor residues and the steroid A-ring carbonyl.  相似文献   
25.
Salpichrolides are natural plant steroids that contain an unusual six‐membered aromatic ring D. We recently reported that some of these compounds, and certain analogs with a simplified side chain, exhibited antagonist effects toward the human estrogen receptor (ER), a nuclear receptor whose endogenous ligand has an aromatic A ring (estradiol). Drugs acting through the inhibition or modulation of ERs are frequently used as a hormonal therapy for ER(+) breast cancer. Previous results suggested that the aromatic D ring was a key structural motif for the observed activity; thus, this modified steroid nucleus may provide a new scaffold for the design of novel antiestrogens. Using molecular dynamics (MD) simulation we have modeled the binding mode of the natural salpichrolide A and a synthetic analog with an aromatic D ring within the ERα. These results taken together with the calculated energetic contributions associated to the different ligand‐binding modes are consistent with a preferred inverted orientation of the steroids in the ligand‐binding pocket with the aromatic ring D occupying a position similar to that observed for the A ring of estradiol. Major changes in both dynamical behavior and global positioning of H11 caused by the loss of the ligand–His524 interaction might explain, at least in part, the molecular basis of the antagonism exhibited by these compounds. Using steered MD we also found a putative unbinding pathway for the steroidal ligands through a cavity formed by residues in H3, H7, and H11, which requires only minor changes in the overall receptor conformation. Proteins 2015; 83:1297–1306. © 2015 Wiley Periodicals, Inc.  相似文献   
26.
Three analogs of neuroactive steroids were prepared (4-6) in which 1,11- or 11,19-oxygen bridges give a constrained conformation. Their 3D structures were obtained by ab initio calculations and in the case of 3alpha-hydroxy-11,19-epoxypregn-4-ene-20-one (4), confirmed by X-ray analysis. Biological activity of the synthetic steroids was assayed in vitro using t-[(3)H]butylbicycloorthobenzoate as radiolabeled ligand for the GABA(A) receptor. The activity of compound 4 was similar to that of allopregnanolone (1). 1alpha,11alpha-Epoxypregnanolone (6) was more active than pregnanolone (2).  相似文献   
27.
Alvarez LD  Mañez PA  Estrin DA  Burton G 《Proteins》2012,80(7):1798-1809
A structure for the ligand binding domain (LBD) of the DAF-12 receptor from Caenorhabditis elegans was obtained from the X-ray crystal structure of the receptor LBD from Strongyloides stercoralis bound to (25R)-Δ(7)-dafachronic acid (DA) (pdb:3GYU). The model was constructed in the presence of the ligand using a combination of Modeller, Autodock, and molecular dynamics (MD) programs, and then its dynamical behavior was studied by MD. A strong ligand binding mode (LBM) was found, with the three arginines in the ligand binding pocket (LBP) contacting the C-26 carboxylate group of the DA. The quality of the ceDAF-12 model was then evaluated by constructing several ligand systems for which the experimental activity is known. Thus, the dynamical behavior of the ceDAF-12 complex with the more active (25S)-Δ(7)-DA showed two distinct binding modes, one of them being energetically more favorable compared with the 25R isomer. Then the effect of the Arg564Cys and Arg598Met mutations on the (25R)-Δ(7)-DA binding was analyzed. The MD simulations showed that in the first case the complex was unstable, consistent with the lack of transactivation activity of (25R)-Δ(7)-DA in this mutant. Instead, in the case of the Arg598Met mutant, known to produce a partial loss of activity, our model predicted smaller effects on the LBM with a more stable MD trajectory. The model also showed that removal of the C-25 methyl does not impede the simultaneous strong interaction of the carboxylate with the three arginines, predicting that 27-nor-DAs are putative ceDAF-12 ligands.  相似文献   
28.
29.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号