首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   16篇
  2021年   5篇
  2019年   1篇
  2017年   1篇
  2016年   6篇
  2015年   10篇
  2014年   8篇
  2013年   5篇
  2012年   1篇
  2011年   11篇
  2010年   8篇
  2009年   5篇
  2008年   3篇
  2007年   8篇
  2006年   6篇
  2005年   9篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   7篇
  2000年   9篇
  1999年   3篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   4篇
  1976年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1953年   2篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
11.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
12.

Background

The cell-cycle inhibitor and tumor suppressor cyclin dependent kinase inhibitor, p16ink4a, is one of the two gene products of the ink4a/ARF (cdkn2a) locus on chromosome 9q21. Up-regulation of p16ink4a has been linked to cellular senescence, and findings from studies on different mammalian tissues suggest that p16ink4a may be a biomarker of organismal versus chronological age.

Objective

The aim of this study was to examine the immunolocalization pattern of p16ink4a in human labial salivary gland (LSG) tissue, and to analyze whether its expression level in LSGs is a peripheral correlate of cognitive decline in late midlife.

Methods

The present study was a part of a study of causes and predictors of cognitive decline in middle-aged men in a Danish birth cohort. It is based on data from 181 male participants from the Danish Metropolit birth cohort, born in 1953, who were examined for age-associated alterations in cognition, dental health, and morphological and autonomic innervation characteristics of the LSGs. The participants were allocated to two groups based on the relative change in cognitive performance from young adulthood to late midlife. LSG biopsies were analyzed by qRT-PCR for the expression level of p16ink4a. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded sections of LSGs.

Results

p16ink4a immunoreactivity was observed in LSG ductal, myoepithelial, and stromal cells, but not in acinar cells. The mean relative expression of p16ink4a in LSGs was higher in the group of participants with decline in cognitive performance. A logistic regression analysis revealed that the relative p16 expression was predictive of the participant’s group assignment. A negative correlation was found between relative p16ink4a expression and the participant’s standardized regression residuals from early adulthood to late midlife cognitive performance scores.

Conclusions

p16ink4a expression in human LSGs may constitute a potential peripheral correlate of cognitive decline. Human labial salivary glands seem suitable for studies on organismal as opposed to chronological age.  相似文献   
13.
The crystal structure of mature dipeptidyl peptidase I reveals insight into the unique tetrameric structure, substrate binding and activation of this atypical papain family peptidase. Each subunit is composed of three peptides. The heavy and light chains form the catalytic domain, which adopts the papain fold. The residual pro-part forms a beta-barrel with the carboxylate group of Asp1 pointing towards the substrate amino-terminus. The tetrameric structure appears to stabilize the association of the two domains and encloses a 12700 A3 spherical cavity. The tetramer contains six chloride ions, one buried in each S2 pocket and two at subunit interfaces.  相似文献   
14.
We have developed a specific and efficient method for complete removal of polyhistidine purification tags (HisTags) from the N-termini of target proteins. The method is based on the use of the aminopeptidase dipeptidyl peptidase I (DPPI), either alone or in combination with glutamine cyclotransferase (GCT) and pyroglutamyl aminopeptidase (PGAP). In both cases, the HisTag is cleaved off by DPPI, which catalyzes a stepwise excision of a wide range of dipeptides from the N-terminus of a peptide chain. Some sequences, however, are resistant to DPPI cleavage and a number of mature proteins have nonsubstrate N-termini which protects them against digestion. For such proteins, HisTags composed of an even number of residues can be cleaved off by treatment with DPPI alone. When the target protein is unprotected against DPPI, a blocking group is generated enzymatically from a glutamine residue inserted between the HisTag and the target protein. A protein with a HisTag-Gln extension is incubated with both DPPI and GCT. As above, the polyhistidine sequence is cleaved off by DPPI, but when the glutamine residue appears in the N-terminus, it is immediately converted into a pyroglutamyl residue by an excess of GCT and further DPPI digestion is prevented. The desired sequence is finally obtained by excision of the pyroglutamyl residue with PGAP. All the enzymes employed can bind to immobilized metal affinity chromatography (IMAC) matrices, and in this paper we demonstrate a simple and highly effective process combining IMAC purification of His-tagged proteins, our aminopeptidase-based method for specific excision of HisTags and use of subtractive IMAC for removing processing enzymes. Typical recoveries were 75-90% for the enzymatic processing and subtractive IMAC. The integrated process holds promises for use in large-scale production of pharmaceutical proteins because of a simple overall design, use of robust and inexpensive matrices, and use of enzymes of either recombinant or plant origin.  相似文献   
15.
Presence or absence of N-acetylneuraminic acid (Neu5Ac) can change a sialylated glycoprotein's serum half-life and possibly its function. We evaluated the linearity, sensitivity, reproducibility, and accuracy of a HPAEC/PAD method to determine its suitability for routine simultaneous analysis of Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). An effective internal standard for this analysis is 3-deoxy-d-glycero-d- galacto-2-nonulosonic acid (KDN). We investigated the effect of the Au working electrode recession and determined that linear range and sensitivity were dependent on electrode recession. Using an electrode that was 350 &mgr;m recessed from the electrode block, the minimum detection limits of Neu5Ac, KDN, and Neu5Gc were 2, 5, and 2 pmol, respectively, and were reduced to 1, 2, and 0.5 pmol using a new electrode. The response of standards was linear from 10 to 500 pmol (r2>0.99) regardless of electrode recession. When Neu5Ac, KDN, and Neu5Gc (200 pmol each) were analyzed repetitively for 48 h, area RSDs were <3%. Reproducibility was unaffected when injections of glycoprotein neuraminidase and acid digestions were interspersed with standard injections. Area RSDs of Neu5Ac and Neu5Gc improved when the internal standard was used. We determined the precision and accuracy of this method for both a recessed and a new working electrode by analyzing Neu5Ac and Neu5Gc contents of bovine fetuin and bovine and human transferrins. Results were consistent with published values and independent of the working electrode. The sensitivity, reproducibility, and accuracy of this method make it suitable for direct routine analysis of glycoprotein Neu5Ac and Neu5Gc contents.   相似文献   
16.
Mitochondrial dysfunction underlying changes in neurodegenerative diseases is often associated with apoptosis and a progressive loss of neurons, and damage to the mitochondrial genome is proposed to be involved in such pathologies. In the present study we designed a mouse model that allows us to specifically induce mitochondrial DNA toxicity in the forebrain neurons of adult mice. This is achieved by CaMKIIα-regulated inducible expression of a mutated version of the mitochondrial UNG DNA repair enzyme (mutUNG1). This enzyme is capable of removing thymine from the mitochondrial genome. We demonstrate that a continual generation of apyrimidinic sites causes apoptosis and neuronal death. These defects are associated with behavioral alterations characterized by increased locomotor activity, impaired cognitive abilities, and lack of anxietylike responses. In summary, whereas mitochondrial base substitution and deletions previously have been shown to correlate with premature and natural aging, respectively, we show that a high level of apyrimidinic sites lead to mitochondrial DNA cytotoxicity, which causes apoptosis, followed by neurodegeneration.A variety of both exogenous and endogenous reactive compounds present a constant threat to the integrity of DNA in living cells. DNA damage introduced by such compounds can lead to high and deleterious mutation rates as well as DNA cytotoxicity, both to the nuclear and the mitochondrial genome. This has triggered the evolution of several different DNA repair pathways (28). One is the base excision repair (BER) pathway, which repairs small base alterations that do not distort the DNA helix. Repair of such highly abundant lesions by BER is performed by a multistep process that is initiated by a damage-specific DNA glycosylase, which removes the damaged base. One of these glycosylases is uracil-DNA glycosylase (UDG), which acts to preserve the genome by removing mutagenic uracil residues from the DNA. This glycosylase, as well as the OGG1 glycosylase that is specialized for the removal of oxidized bases, exists in a nuclear and mitochondrial splice form (1, 11, 37, 45). Accordingly, BER of a variety of lesions has been observed in mitochondria (26, 31).Damage to the mitochondrial DNA (mtDNA) can cause respiratory chain deficiency and lead to disorders that have varied phenotypes (35, 41). Many involve neurological features that are often associated with cell loss within specific brain regions. These pathologies, along with the increasing evidence of a decline in mitochondrial function with aging, have raised speculation that key changes in mitochondrial DNA sequences and functions could have a vital role in age-related neurodegenerative diseases (41). This has also been studied in several model organisms. Mouse models with respiratory chain deficient dopamine neurons have demonstrated adult onset Parkinsonism phenotype (16), and cell death induced by mitochondrial toxicity is likely to underlie Alzheimer disease (32). Mitochondrial oxidative stress and accumulation of mtDNA damage are believed to be particularly devastating to postmitotic differentiated tissue, including neurons (30). The mtDNA contains genetic information for 13 polypeptides that are a part of the electron transport chain and for rRNAs and tRNAs that are necessary for mitochondrial protein synthesis. Thus, damage to the mtDNA genome will affect the energetic capacities of the mitochondria and also influence the level of reactive oxygen species (ROS) and ultimately the susceptibility to apoptosis (30, 35).Some recent influential studies have assessed the effect of mtDNA mutagenesis, including small base-pair substitutions and larger mtDNA deletions, on the life span of mice. It was concluded that a massive increase in the frequency of mtDNA base-pair substitutions are required for inducing premature aging, whereas the number of mtDNA deletions coincides better with natural aging (25, 47-49).In the present study, we have combined two novel transgenic mouse models, which allow the induction of a high number of apyrimidinic (AP) sites specifically to the mitochondrial genome in adults simply by the addition of doxycycline to the diet. Such AP sites are created by the expression of a mutated version of mitochondrion-targeted human UDG (abbreviated here as mutUNG1), whereby an amino acid substitution results in an enzyme that removes thymine, in addition to uracil, from DNA (23). The CaMKIIα promoter restricts expression of the mutUNG1 to forebrain neurons (34). We demonstrate that a continuous generation of AP sites leads to apoptosis, accelerated neurodegeneration, and impaired behavior.  相似文献   
17.
Repair of damaged plasma membrane in eukaryotic cells is largely dependent on the binding of annexin repair proteins to phospholipids. Changing the biophysical properties of the plasma membrane may provide means to compromise annexin-mediated repair and sensitize cells to injury. Since, cancer cells experience heightened membrane stress and are more dependent on efficient plasma membrane repair, inhibiting repair may provide approaches to sensitize cancer cells to plasma membrane damage and cell death. Here, we show that derivatives of phenothiazines, which have widespread use in the fields of psychiatry and allergy treatment, strongly sensitize cancer cells to mechanical-, chemical-, and heat-induced injury by inhibiting annexin-mediated plasma membrane repair. Using a combination of cell biology, biophysics, and computer simulations, we show that trifluoperazine acts by thinning the membrane bilayer, making it more fragile and prone to ruptures. Secondly, it decreases annexin binding by compromising the lateral diffusion of phosphatidylserine, inhibiting the ability of annexins to curve and shape membranes, which is essential for their function in plasma membrane repair. Our results reveal a novel avenue to target cancer cells by compromising plasma membrane repair in combination with noninvasive approaches that induce membrane injuries.  相似文献   
18.
Twenty Aspergillus strains were evaluated for production of extracellular cellulolytic and xylanolytic activities. Aspergillus brasiliensis, A. niger and A. japonicus produced the highest xylanase activities with the A. brasiliensis and A. niger strains producing thermostable β-xylosidases. The β-xylosidase activities of the A. brasiliensis and A. niger strains had similar temperature and pH optima at 75°C and pH 5 and retained 62% and 99%, respectively, of these activities over 1 h at 60°C. At 75°C, these values were 38 and 44%, respectively. Whereas A. niger is a well known enzyme producer, this is the first report of xylanase and thermostable β-xylosidase production from the newly identified, non-ochratoxin-producing species A. brasiliensis.  相似文献   
19.

Aims

Genome-wide association studies have identified novel BMI/obesity associated susceptibility loci. The purpose of this study is to determine associations with overweight, obesity, morbid obesity and/or general adiposity in a Danish population. Moreover, we want to investigate if these loci associate with type 2 diabetes and to elucidate potential underlying metabolic mechanisms.

Methods

15 gene variants in 14 loci including TMEM18 (rs7561317), SH2B1 (rs7498665), KCTD15 (rs29941), NEGR1 (rs2568958), ETV5 (rs7647305), BDNF (rs4923461, rs925946), SEC16B (rs10913469), FAIM2 (rs7138803), GNPDA2 (rs10938397), MTCH2 (rs10838738), BAT2 (rs2260000), NPC1 (rs1805081), MAF (rs1424233), and PTER (rs10508503) were genotyped in 18,014 middle-aged Danes.

Results

Five of the 15 gene variants associated with overweight, obesity and/or morbid obesity. Per allele ORs ranged from 1.15–1.20 for overweight, 1.10–1.25 for obesity, and 1.41–1.46 for morbid obesity. Five of the 15 variants moreover associated with increased measures of adiposity. BDNF rs4923461 displayed a borderline BMI-dependent protective effect on type 2 diabetes (0.87 (0.78–0.96, p = 0.008)), whereas SH2B1 rs7498665 associated with nominally BMI-independent increased risk of type 2 diabetes (1.16 (1.07–1.27, p = 7.8×10−4)).

Conclusions

Associations with overweight and/or obesity and measures of obesity were confirmed for seven out of the 15 gene variants. The obesity risk allele of BDNF rs4923461 protected against type 2 diabetes, which could suggest neuronal and peripheral distinctive ways of actions for the protein. SH2B1 rs7498665 associated with type 2 diabetes independently of BMI.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号