全文获取类型
收费全文 | 162篇 |
免费 | 12篇 |
专业分类
174篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 7篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 7篇 |
2015年 | 8篇 |
2014年 | 8篇 |
2013年 | 11篇 |
2012年 | 10篇 |
2011年 | 11篇 |
2010年 | 11篇 |
2009年 | 5篇 |
2008年 | 8篇 |
2007年 | 11篇 |
2006年 | 3篇 |
2005年 | 6篇 |
2004年 | 4篇 |
2003年 | 2篇 |
2002年 | 3篇 |
2001年 | 5篇 |
2000年 | 5篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1990年 | 1篇 |
1987年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1977年 | 1篇 |
1972年 | 2篇 |
1971年 | 1篇 |
1969年 | 4篇 |
1966年 | 2篇 |
1965年 | 1篇 |
1963年 | 2篇 |
1962年 | 2篇 |
1960年 | 1篇 |
1957年 | 1篇 |
排序方式: 共有174条查询结果,搜索用时 15 毫秒
51.
52.
Hao Chen Michaela Egger Xiaochen Xu Laurin Flemmich Olga Krasheninina Aiai Sun Ronald Micura Aiming Ren 《Nucleic acids research》2020,48(21):12394
Riboswitches are important gene regulatory elements frequently encountered in bacterial mRNAs. The recently discovered nadA riboswitch contains two similar, tandemly arrayed aptamer domains, with the first domain possessing high affinity for nicotinamide adenine dinucleotide (NAD+). The second domain which comprises the ribosomal binding site in a putative regulatory helix, however, has withdrawn from detection of ligand-induced structural modulation thus far, and therefore, the identity of the cognate ligand and the regulation mechanism have remained unclear. Here, we report crystal structures of both riboswitch domains, each bound to NAD+. Furthermore, we demonstrate that ligand binding to domain 2 requires significantly higher concentrations of NAD+ (or ADP retaining analogs) compared to domain 1. Using a fluorescence spectroscopic approach, we further shed light on the structural features which are responsible for the different ligand affinities, and describe the Mg2+-dependent, distinct folding and pre-organization of their binding pockets. Finally, we speculate about possible scenarios for nadA RNA gene regulation as a putative two-concentration sensor module for a time-controlled signal that is primed and stalled by the gene regulation machinery at low ligand concentrations (domain 1), and finally triggers repression of translation as soon as high ligand concentrations are reached in the cell (domain 2). 相似文献
53.
Development of a novel affinity chromatography resin for platform purification of lambda fabs 下载免费PDF全文
Nora Eifler Giovanni Medaglia Oliver Anderka Linus Laurin Pim Hermans 《Biotechnology progress》2014,30(6):1311-1318
Antigen‐binding fragments (Fabs) are novel formats in the growing pipeline of biotherapeutics. Sharing similar features to monoclonal antibodies (mAbs) with regard to expression, Fabs are considered as unchallenging for upstream development. Yet for downstream processing, the mature mAb downstream purification platform is not directly applicable. New approaches need to be found to achieve a lean purification process that maintains quality, productivity, and timelines while being generically applicable independent of the expression system. In a successful collaboration, BAC BV, GE Healthcare, and Novartis Pharma AG have developed a new affinity chromatography medium (resin) suitable to support cGMP manufacturing of lambda Fabs. We show that using this novel chromatography medium for the capture step, a purification platform for lambda Fabs can be established. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1311–1318, 2014 相似文献
54.
Extant amniotes show remarkable postural diversity. Broadly speaking, limbs with erect (strongly adducted, more vertically oriented) posture are found in mammals that are particularly heavy (graviportal) or show good running skills (cursorial), while crouched (highly flexed) limbs are found in taxa with more generalized locomotion. In Reptilia, crocodylians have a “semi-erect” (somewhat adducted) posture, birds have more crouched limbs and lepidosaurs have sprawling (well-abducted) limbs. Both synapsids and reptiles underwent a postural transition from sprawling to more erect limbs during the Mesozoic Era. In Reptilia, this postural change is prominent among archosauriforms in the Triassic Period. However, limb posture in many key Triassic taxa remains poorly known. In Synapsida, the chronology of this transition is less clear, and competing hypotheses exist. On land, the limb bones are subject to various stresses related to body support that partly shape their external and internal morphology. Indeed, bone trabeculae (lattice-like bony struts that form the spongy bone tissue) tend to orient themselves along lines of force. Here, we study the link between femoral posture and the femoral trabecular architecture using phylogenetic generalized least squares. We show that microanatomical parameters measured on bone cubes extracted from the femoral head of a sample of amniote femora depend strongly on body mass, but not on femoral posture or lifestyle. We reconstruct ancestral states of femoral posture and various microanatomical parameters to study the “sprawling-to-erect” transition in reptiles and synapsids, and obtain conflicting results. We tentatively infer femoral posture in several hypothetical ancestors using phylogenetic flexible discriminant analysis from maximum likelihood estimates of the microanatomical parameters. In general, the trabecular network of the femoral head is not a good indicator of femoral posture. However, ancestral state reconstruction methods hold great promise for advancing our understanding of the evolution of posture in amniotes. 相似文献
55.
Roney S Coimbra Veronique Voisin Antoine B de Saizieu Raija LP Lindberg Matthias Wittwer David Leppert Stephen L Leib 《BMC biology》2006,4(1):15-18
Background
Pneumococcal meningitis is associated with high mortality (~30%) and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown. 相似文献56.
Tetrapods include the only fully terrestrial vertebrates, but they also include many amphibious, aquatic and flying groups. They occupy the highest levels of the food chain on land and in aquatic environments. Tetrapod evolution has generated great interest, but the earliest phases of their history are poorly understood. Recent studies have questioned long-accepted hypotheses about the origin of the pentadactyl limb, the phylogeny of tetrapods and the environment in which the first tetrapods lived. 相似文献
57.
58.
59.
The prevailing hypothesis about grasping in primates stipulates an evolution from power towards precision grips in hominids. The evolution of grasping is far more complex, as shown by analysis of new morphometric and behavioural data. The latter concern the modes of food grasping in 11 species (one platyrrhine, nine catarrhines and humans). We show that precision grip and thumb-lateral behaviours are linked to carpus and thumb length, whereas power grasping is linked to second and third digit length. No phylogenetic signal was found in the behavioural characters when using squared-change parsimony and phylogenetic eigenvector regression, but such a signal was found in morphometric characters. Our findings shed new light on previously proposed models of the evolution of grasping. Inference models suggest that Australopithecus, Oreopithecus and Proconsul used a precision grip. 相似文献
60.