首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   12篇
  174篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   8篇
  2014年   8篇
  2013年   11篇
  2012年   10篇
  2011年   11篇
  2010年   11篇
  2009年   5篇
  2008年   8篇
  2007年   11篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1990年   1篇
  1987年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1972年   2篇
  1971年   1篇
  1969年   4篇
  1966年   2篇
  1965年   1篇
  1963年   2篇
  1962年   2篇
  1960年   1篇
  1957年   1篇
排序方式: 共有174条查询结果,搜索用时 0 毫秒
31.
When life cycle assessment (LCA) results do not show a clear and certain environmental preference of one choice over one or several alternatives, current methods are limited in their ability to inform decision-makers. To address this and related cross-cutting issues, a group of LCA practitioners has been working on a roadmap for capacity development in LCA. The roadmap is identifying common needs for development in LCA, which can then be addressed by the broader LCA community. The roadmap document on decision-making support, having undergone a public comment period, outlines the current state as well as needs and milestones to ensure progress continues apace. The roadmap document, available for download, covers five main areas of development: (1) performance measures of confidence, which identify the acceptable uncertainty for study results, while minimizing expenditures; (2) selection of impact categories, an area with multiple existing methods. The roadmap suggests codifying these methods and identifying their suitability to various applications; (3) normalization; while several methods of normalization are in use, the method with the greatest acceptance in the LCA community (i.e., relying on total or per capita regional emissions/extractions) has a number of methodological drawbacks; (4) weighting, which is a form of multi-criteria decision analysis (MCDA). The broader MCDA field can enrich LCA by providing studied methods of assessing trade-offs; and (5) visualization of results. Many other LCA capacity needs would benefit from documentation. These include but are not limited to the following: addressing ill-characterized uncertainty, life cycle inventory data needs, data format needs, and tool capabilities. Other roadmapping groups are forming and are looking for practitioners to support the effort.  相似文献   
32.
33.
The anode/electrolyte interface behavior, and by extension, the overall cell performance of sodium-ion batteries is determined by a complex interaction of processes that occur at all components of the electrochemical cell across a wide range of size- and timescales. Single-scale studies may provide incomplete insights, as they cannot capture the full picture of this complex and intertwined behavior. Broad, multiscale studies are essential to elucidate these processes. Within this perspectives article, several analytical and theoretical techniques are introduced, and described how they can be combined to provide a more complete and comprehensive understanding of sodium-ion battery (SIB) performance throughout its lifetime, with a special focus on the interfaces of hard carbon anodes. These methods target various length- and time scales, ranging from micro to nano, from cell level to atomistic structures, and account for a broad spectrum of physical and (electro)chemical characteristics. Specifically, how mass spectrometric, microscopic, spectroscopic, electrochemical, thermodynamic, and physical methods can be employed to obtain the various types of information required to understand battery behavior will be explored. Ways are then discussed how these methods can be coupled together in order to elucidate the multiscale phenomena at the anode interface and develop a holistic understanding of their relationship to overall sodium-ion battery function.  相似文献   
34.

Background

Bacterial interactions with the environment- and/or host largely depend on the bacterial glycome. The specificities of a bacterial glycome are largely determined by glycosyltransferases (GTs), the enzymes involved in transferring sugar moieties from an activated donor to a specific substrate. Of these GTs their coding regions, but mainly also their substrate specificity are still largely unannotated as most sequence-based annotation flows suffer from the lack of characterized sequence motifs that can aid in the prediction of the substrate specificity.

Results

In this work, we developed an analysis flow that uses sequence-based strategies to predict novel GTs, but also exploits a network-based approach to infer the putative substrate classes of these predicted GTs. Our analysis flow was benchmarked with the well-documented GT-repertoire of Campylobacter jejuni NCTC 11168 and applied to the probiotic model Lactobacillus rhamnosus GG to expand our insights in the glycosylation potential of this bacterium. In L. rhamnosus GG we could predict 48 GTs of which eight were not previously reported. For at least 20 of these GTs a substrate relation was inferred.

Conclusions

We confirmed through experimental validation our prediction of WelI acting upstream of WelE in the biosynthesis of exopolysaccharides. We further hypothesize to have identified in L. rhamnosus GG the yet undiscovered genes involved in the biosynthesis of glucose-rich glycans and novel GTs involved in the glycosylation of proteins. Interestingly, we also predict GTs with well-known functions in peptidoglycan synthesis to also play a role in protein glycosylation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-349) contains supplementary material, which is available to authorized users.  相似文献   
35.
36.
Inner vertebral architecture is poorly known, except in human and laboratory animals. In order to document this topic at a broad comparative level, a 2D‐histomorphometric study of vertebral centra was conducted in a sample of 98 therian mammal species, spanning most of the size range and representing the main locomotor adaptations known in therian taxa. Eleven variables relative to the development and geometry of trabecular networks were extracted from CT scan mid‐sagittal sections. Phylogeny‐informed statistical tests were used to reveal the respective influences of phylogeny, size, and locomotion adaptations on mammalian vertebral structure. The use of random taxon reshuffling and squared change parsimony reveals that 9 of the 11 characteristics (the two exceptions are total sectional area and structural polarization) contain a phylogenetic signal. Linear discriminant analyses suggest that the sampled taxa can be arranged into three categories with respect to locomotion mode: a) terrestrial + flying + digging + amphibious forms, b) coastal oscillatory aquatic taxa, and c) pelagic oscillatory aquatic forms represented by oceanic cetaceans. Pairwise comparison tests and linear regressions show that, when specific size increases, the length of trabecular network (Tt.Tb.Le), as well as trabecular proliferation in total sections (Pr.Tb.Tt), increase with positive allometry. This process occurs in all locomotion categories but is particularly pronounced in pelagic oscillators. Conversely, mean trabecular width has a lesser increase with size in pelagic oscillators. Trabecular orientation is not influenced by size. All tests were corrected for multiple testing. By using six structural variables or indices, locomotion mode can be predicted with a 97.4% success rate for terrestrial forms, 66.7% for coastal oscillatory, and 81.3% for pelagic oscillatory. The possible functional meaning of these results and their potential use for paleobiological inference of locomotion in extinct taxa are discussed. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
37.
A phylogenetic approach to the study of evolutionary patterns is based on taxic homologies (synapomorphies). In contrast, the recognition of evolutionary processes (namely heterochronies) involves analysis of the entire morphology. Recent developments in geometric morphometry permit analysis of morphological similarities grounded in operational homologies. Such morphometric techniques are explored (1) at the level of evolutionary processes, and (2) as a complement in exploration of phylogenetic relationships. To examplify this, we perform a two-part study of the ontogeny and phylogeny of the spatangoid sea urchin Echinocardium. First, a phylogenetic analysis of ten Recent species in the genus is performed on 18 informative characters of the test. Second, morphological divergences among the species are analyzed using procrustean (superimposition) methods based on 49 homologous points. An additive distance tree is built from a matrix of morphometric distances among adult specimens. This tree is fully congruent with the phyletic results. Ontogenetic processes are explored by inserting ontogenetic series into the analysis. A distance tree including the juvenile stages shows that the general evolutionary trend of the genus is peramorphic, but species-to-species comparisons attest that no general clinal trend exists. Our analysis emphasizes the importance of morphometric approaches in evolutionary studies (1) for the understanding of heterochronies; (2) to trace the morphological implications of phylogenetic patterns; and (3) to estimate the impact of homoplasies.  相似文献   
38.
An incomplete ‘mummy’ from the Phosphorites du Quercy (presumed Eocene) was identified as a salamander during the 19th century. The specimen has now been computed tomography (CT) scanned, and this revealed the incomplete skeleton (with perfectly preserved bones) and soft tissues (lung). The fossil represents a new, well‐characterized taxon. Despite the absence of the skull, several features allow a phylogenetic analysis. The fossil belongs to pseudosaurian caudates; it is tentatively assigned to the Salamandridae, although affinities with Plethodontidae cannot be definitely ruled out.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号