首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1882篇
  免费   180篇
  2022年   13篇
  2021年   34篇
  2020年   13篇
  2019年   14篇
  2018年   27篇
  2017年   20篇
  2016年   42篇
  2015年   82篇
  2014年   80篇
  2013年   105篇
  2012年   116篇
  2011年   130篇
  2010年   75篇
  2009年   80篇
  2008年   116篇
  2007年   117篇
  2006年   105篇
  2005年   108篇
  2004年   105篇
  2003年   90篇
  2002年   108篇
  2001年   21篇
  2000年   18篇
  1999年   28篇
  1998年   31篇
  1997年   22篇
  1996年   22篇
  1995年   17篇
  1994年   17篇
  1993年   19篇
  1992年   19篇
  1991年   24篇
  1990年   19篇
  1989年   13篇
  1988年   16篇
  1987年   19篇
  1986年   17篇
  1985年   8篇
  1984年   14篇
  1982年   9篇
  1981年   14篇
  1980年   11篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1974年   7篇
  1968年   5篇
  1944年   5篇
  1943年   5篇
  1941年   5篇
排序方式: 共有2062条查询结果,搜索用时 265 毫秒
991.
Amyloid β-protein (Aβ) deposits in brains of Alzheimer's disease patients generate proinflammatory cytokines and chemokines that recruit microglial cells to phagocytose Aβ. Nucleotides released from apoptotic cells activate P2Y(2) receptors (P2Y(2) Rs) in macrophages to promote clearance of dead cells. In this study, we investigated the role of P2Y(2) Rs in the phagocytosis and clearance of Aβ. Treatment of mouse primary microglial cells with fibrillar (fAβ(1-42) ) and oligomeric (oAβ(1-42) ) Aβ(1-42) aggregation solutions caused a rapid release of ATP (maximum after 10 min). Furthermore, fAβ(1-42) and oAβ(1-42) treatment for 24 h caused an increase in P2Y(2) R gene expression. Treatment with fAβ(1-42) and oAβ(1-42) aggregation solutions increased the motility of neighboring microglial cells, a response inhibited by pre-treatment with apyrase, an enzyme that hydrolyzes nucleotides. The P2Y(2) R agonists ATP and UTP caused significant uptake of Aβ(1-42) by microglial cells within 30 min, which reached a maximum within 1 h, but did not increase Aβ(1-42) uptake by primary microglial cells isolated from P2Y(2) R(-/-) mice. Inhibitors of α(v) integrins, Src and Rac decreased UTP-induced Aβ(1-42) uptake, suggesting that these previously identified components of the P2Y(2) R signaling pathway play a role in Aβ phagocytosis by microglial cells. Finally, we found that UTP treatment enhances Aβ(1-42) degradation by microglial cells, but not in cells isolated from P2Y(2) R(-/-) mice. Taken together, our findings suggest that P2Y(2) Rs can activate microglial cells to enhance Aβ clearance and highlight the P2Y(2) R as a therapeutic target in Alzheimer's disease.  相似文献   
992.
993.
Mutations in the motor protein cytoplasmic dynein have been found to cause Charcot-Marie-Tooth disease, spinal muscular atrophy, and severe intellectual disabilities in humans. In mouse models, neurodegeneration is observed. We sought to develop a novel model which could incorporate the effects of mutations on distance travelled and velocity. A mechanical model for the dynein mediated transport of endosomes is derived from first principles and solved numerically. The effects of variations in model parameter values are analysed to find those that have a significant impact on velocity and distance travelled. The model successfully describes the processivity of dynein and matches qualitatively the velocity profiles observed in experiments.  相似文献   
994.
Ovarian cancer progression is correlated with accumulation of aberrant CpG island methylation. In ovarian cancer, ascites fluid contains numerous Epidermal-Growth-Factor-Receptor (EGFR) activators, which could result in a tumor microenvironment of constant EGFR activation. Signaling pathways downstream of EGFR, such as Ras, regulate DNA methylation. We hypothesized that chronic EGFR activation could alter DNA methylation. We found that EGFR activation increased DNA methyltransferase (DNMT) activity acutely, as well as after long-term EGF treatment or expression of a mutationally activated EGFR. Furthermore, this increase in DNMT activity was dependent on EGFR catalytic activity and resulted in increased global DNA methylation. Additionally, treatment with the DNMT inhibitor/hypomethylating agent 5-Aza-2′-deoxycytidine (AZA) inhibited the EGF induced increase of both DNMT activity and global methylation. These data support a role for EGFR in the process of accumulated DNA methylation during ovarian cancer progression and suggest that epigenetic therapy may be beneficial for the treatment of ovarian cancer.Key words: ovarian cancer, DNA methylation, epidermal growth factor receptor, DNA methyltransferase, epigenetics, E-cadherin  相似文献   
995.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.  相似文献   
996.
Ideal biomaterials for bone grafts must be biocompatible, osteoconductive, osteoinductive and have appropriate mechanical properties. For this, the development of synthetic bone substitutes mimicking natural bone is desirable, but this requires controllable mineralization of the collagen matrix. In this study, densified collagen films (up to 100 μm thick) were fabricated by a plastic compression technique and cross-linked using carbodiimide. Then, collagen-hydroxyapatite composites were prepared by using a polymer-induced liquid-precursor (PILP) mineralization process. Compared to traditional methods that produce only extrafibrillar hydroxyapatite (HA) clusters on the surface of collagen scaffolds, by using the PILP mineralization process, homogeneous intra- and extrafibrillar minerals were achieved on densified collagen films, leading to a similar nanostructure as bone, and a woven microstructure analogous to woven bone. The role of collagen cross-links on mineralization was examined and it was found that the cross-linked collagen films stimulated the mineralization reaction, which in turn enhanced the mechanical properties (hardness and modulus). The highest value of hardness and elastic modulus was 0.7 ± 0.1 and 9.1 ± 1.4 GPa in the dry state, respectively, which is comparable to that of woven bone. In the wet state, the values were much lower (177 ± 31 and 8 ± 3 MPa) due to inherent microporosity in the films, but still comparable to those of woven bone in the same conditions. Mineralization of collagen films with controllable mineral content and good mechanical properties provide a biomimetic route toward the development of bone substitutes for the next generation of biomaterials. This work also provides insight into understanding the role of collagen fibrils on mineralization.  相似文献   
997.
Brown adipose tissue (BAT) differs from white adipose tissue (WAT) by its discrete location and a brown-red color due to rich vascularization and high density of mitochondria. BAT plays a major role in energy expenditure and non-shivering thermogenesis in newborn mammals as well as the adults 1. BAT-mediated thermogenesis is highly regulated by the sympathetic nervous system, predominantly via β adrenergic receptor 2, 3. Recent studies have shown that BAT activities in human adults are negatively correlated with body mass index (BMI) and other diabetic parameters 4-6. BAT has thus been proposed as a potential target for anti-obesity/anti-diabetes therapy focusing on modulation of energy balance 6-8. While several cold challenge-based positron emission tomography (PET) methods are established for detecting human BAT 9-13, there is essentially no standardized protocol for imaging and quantification of BAT in small animal models such as mice. Here we describe a robust PET/CT imaging method for functional assessment of BAT in mice. Briefly, adult C57BL/6J mice were cold treated under fasting conditions for a duration of 4 hours before they received one dose of 18F-Fluorodeoxyglucose (FDG). The mice were remained in the cold for one additional hour post FDG injection, and then scanned with a small animal-dedicated micro-PET/CT system. The acquired PET images were co-registered with the CT images for anatomical references and analyzed for FDG uptake in the interscapular BAT area to present BAT activity. This standardized cold-treatment and imaging protocol has been validated through testing BAT activities during pharmacological interventions, for example, the suppressed BAT activation by the treatment of β-adrenoceptor antagonist propranolol 14, 15, or the enhanced BAT activation by β3 agonist BRL37344 16. The method described here can be applied to screen for drugs/compounds that modulate BAT activity, or to identify genes/pathways that are involved in BAT development and regulation in various preclinical and basic studies.  相似文献   
998.
Body temperature monitoring is crucial in helping to decrease the amount and severity of heat illnesses; however, a practical method of monitoring temperature is lacking. In response to the lack of a practical method of monitoring the temperature of athletes, Hothead Technologies developed a device (HOT), which continuously monitors an athlete's fluctuations in body temperature. HOT measures forehead temperature inside helmets. The purpose of this study was to compare HOT against rectal temperature (Trec). Male volunteers (n = 29, age = 23.5 ± 4.5 years, weight = 83.8 ± 10.4 kg, height = 180.1 ± 5.8 cm, body fat = 12.3 ± 4.5%) exercised on a treadmill at an intensity of 60-75% heart rate reserve (HRR) (wet bulb globe temperature [WBGT] = 28.7° C) until Trec reached 38.7° C. The correlation between Trec and HOT was 0.801 (R = 0.64, standard error of the estimate (SEE) = 0.25, p = 0.00). One reason for this relatively high correlation is the microclimate that HOT is monitoring. HOT is not affected by the external climate greatly because of its location in the helmet. Therefore, factors such as evaporation do not alter HOT temperature to a great degree. HOT was compared with Trec in a controlled setting, and the exercise used in this study was moderate aerobic exercise, very unlike that used in football. In a controlled laboratory setting, the relationship between HOT and Trec showed favorable correlations. However, in applied settings, helmets are repeatedly removed and replaced forcing HOT to equilibrate to forehead temperature every time the helmet is replaced. Therefore, future studies are needed to mimic how HOT will be used in field situations.  相似文献   
999.
Non-adenosine triphosphate (ATP) competitive, allosteric inhibitors provide a promising avenue to develop highly selective small-molecule kinase inhibitors. Although this class of compounds is growing, detection of such inhibitors can be challenging as standard kinase activity assays preferentially detect compounds that bind to active kinases in an ATP competitive manner. We have previously described a time-resolved fluorescence resonance energy transfer (TR-FRET)-based kinase binding assay using the competitive displacement of ATP competitive active site fluorescent probes ("tracers"). Although this format has gained acceptance, published data with this and related formats are almost entirely without examples of non-ATP competitive compounds. Thus, this study addresses whether this format is useful for non-ATP competitive inhibitors. To this end, 15 commercially available non-ATP competitive inhibitors were tested for their ability to displace ATP competitive probes. Despite the diversity of both compound structures and their respective targets, 14 of the 15 compounds displaced the tracers with IC(50) values comparable to literature values. We conclude that such binding assays are well suited for the study of non-ATP competitive inhibitors. In addition, we demonstrate that allosteric inhibitors of BCR-Abl and MEK bind preferentially to the nonphosphorylated (i.e., inactive) form of the kinase, indicating that binding assays may be a preferred format in some cases.  相似文献   
1000.
Mutations in genes encoding aminoacyl-tRNA synthetases are known to cause leukodystrophies and genetic leukoencephalopathies—heritable disorders that result in white matter abnormalities in the central nervous system. Here we report three individuals (two siblings and an unrelated individual) with severe infantile epileptic encephalopathy, clubfoot, absent deep tendon reflexes, extrapyramidal symptoms, and persistently deficient myelination on MRI. Analysis by whole exome sequencing identified mutations in the nuclear-encoded alanyl-tRNA synthetase (AARS) in these two unrelated families: the two affected siblings are compound heterozygous for p.Lys81Thr and p.Arg751Gly AARS, and the single affected child is homozygous for p.Arg751Gly AARS. The two identified mutations were found to result in a significant reduction in function. Mutations in AARS were previously associated with an autosomal-dominant inherited form of axonal neuropathy, Charcot-Marie-Tooth disease type 2N (CMT2N). The autosomal-recessive AARS mutations identified in the individuals described here, however, cause a severe infantile epileptic encephalopathy with a central myelin defect and peripheral neuropathy, demonstrating that defects of alanyl-tRNA charging can result in a wide spectrum of disease manifestations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号