首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   12篇
  115篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   10篇
  2014年   9篇
  2013年   10篇
  2012年   7篇
  2011年   8篇
  2010年   8篇
  2009年   4篇
  2008年   5篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   2篇
  2002年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
31.
32.
It is established that short inverted repeats trigger base substitution mutagenesis in human cells. However, how the replication machinery deals with structured DNA is unknown. It has been previously reported that in human cell‐free extracts, DNA primer extension using a structured single‐stranded template is transiently blocked at DNA hairpins. Here, the proteomic analysis of proteins bound to the DNA template is reported and evidence that the DNA‐PK complex (DNA‐PKcs and the Ku heterodimer) recognizes, and is activated by, structured single‐stranded DNA is provided. Hijacking the DNA‐PK complex by double‐stranded oligonucleotides results in a large removal of the pausing sites and an elevated DNA extension efficiency. Conversely, DNA‐PKcs inhibition results in its stabilization on the template, along with other proteins acting downstream in the Non‐Homologous End‐Joining (NHEJ) pathway, especially the XRCC4‐DNA ligase 4 complex and the cofactor PAXX. Retention of NHEJ factors to the DNA in the absence of DNA‐PKcs activity correlates with additional halts of primer extension, suggesting that these proteins hinder the progression of the DNA synthesis at these sites. Overall these results raise the possibility that, upon binding to hairpins formed onto ssDNA during fork progression, the DNA‐PK complex interferes with replication fork dynamics in vivo.  相似文献   
33.
34.
The striatum, a major component of the brain basal nuclei, is central for planning and executing voluntary movements and undergoes lesions in neurodegenerative disorders such as Huntington disease. To perform highly integrated tasks, the striatum relies on a complex network of communication within and between brain regions with a key role devoted to secreted molecules. To characterize the rat striatum secretome, we combined in vivo microdialysis together with proteomics analysis of trypsin digests and peptidomics studies of native fragments. This versatile approach, carried out using different microdialysis probes and mass spectrometer devices, allowed evidencing with high confidence the expression of 88 proteins and 100 processed peptides. Their secretory pathways were predicted by in silico analysis. Whereas high molecular weight proteins were mainly secreted by the classical mode (94%), low molecular weight proteins equally used classical and non-classical modes (53 and 47%, respectively). In addition, our results suggested alternative secretion mechanisms not predicted by bioinformatics tools. Based on spectrum counting, we performed a relative quantification of secreted proteins and peptides in both basal and neuronal depolarization conditions. This allowed detecting a series of neuropeptide precursors and a 6-fold increase for neurosecretory protein VGF and proenkephalin (PENK) levels. A focused investigation and a long peptide experiment led to the identification of new secreted non-opioid PENK peptides, referred to as PENK 114–133, PENK 239–260, and PENK 143–185. Moreover we showed that injecting synthetic PENK 114–133 and PENK 239–260 into the striatum robustly increased glutamate release in this region. Thus, the combination of microdialysis and versatile proteomics methods shed new light on the secreted protein repertoire and evidenced novel neuropeptide transmitters.In mammalian brain, the striatum plays a critical role for planning and executing voluntary movements and is also involved in cognitive processes (1). The striatum makes use of a complex network architecture connecting specialized anatomical structures to achieve these highly integrated tasks. It receives projections from primary sensory and motor cortices as well as motor thalamic nuclei and sends projections to downstream basal ganglia structures, thereby influencing the control of cortical and brainstem motor systems (2). In this context, communication within and between brain structures appears as a key element for brain functioning. For cell-to-cell communication, secreted proteins play a pivotal regulatory role. To enter the secretory pathway, it has been long assumed that an N-terminal signal peptide sequence is strictly required. However, recent studies have shown that endoplasmic reticulum- and Golgi-independent or non-classical mechanisms may be responsible for protein secretion (3). The extracellular medium is thus more complex than previously suspected, and its characterization has gained a special interest (4, 5). In silico analyses suggest that mature proteins secreted via classical and non-classical mechanisms share common physicochemical properties (6). In this respect, proteomics is a powerful approach for systematically analyzing proteins present in the extracellular medium (79). For neurochemical monitoring of the secretome within the brain, only a few tools provide an appropriate insight into its spatial and temporal dynamics. Microdialysis, in particular, has been shown to be a powerful tool for exploring the extracellular content of the brain in vivo (1012) and for obtaining vital physiological information that cannot be gleaned from in vitro experiments. The combination of this sampling method with mass spectrometry facilitates investigation of the brain secretome in vivo. However, because of the low concentration of proteins in dialysate, which makes investigations challenging in terms of sensitivity, few studies have combined in vivo brain microdialysis and proteomics/peptidomics analysis (1316).In this study, to investigate both proteins and peptides secreted in rat striatum, we performed mass spectrometry analysis of microdialysis fluids. Microdialysis of small and large proteins was carried out using various cutoff probes, and the samples were analyzed through proteomics and peptidomics approaches. In addition, we used spectrum counting (17, 18) to measure the relative abundance of secreted proteins and their processed peptides and to study the modulation of these abundances during neuronal depolarization. This approach allowed us to point out the secretion of new neuropeptides, including neurotransmitters.  相似文献   
35.
Boldenone is banned in the European Union (Directive 96/22/EC) as growth promoter for meat producing animals. Boldione (ADD), boldenone and boldenone esters (mainly the undecylenate form) are commercially available as anabolic preparations, either to the destination of human, horse or cattle. Since the late 90s, the natural occurrence of boldenone metabolites has been reported in cattle. According to EU regulation, the unambiguous demonstration of boldenone administration in bovine urine should be provided on the basis of boldenone identification in the corresponding conjugate fraction. An analytical method has been developed and validated according to current standards with main concern to the measurement of intact 17β-boldenone-sulphate. The analytical procedure included direct extraction–purification of target analyte on octadecylsilyl cartridges and direct detection of phase II metabolite by liquid chromatography (negative electrospray), tandem mass spectrometry (QqQ) or high resolution mass spectrometry (Orbitrap™). Decision limit (CCα) and detection capability (CCβ) were respectively 0.2 μg L−1 and 0.4 μg L−1 on triple quadrupole and 0.1 μg L−1 and 0.2 μg L−1 on hybrid system. The method was successfully applied to the analysis of incurred samples collected in different experiments. 17β-Boldenone-sulphate was measurable up to 36 h after oral administration of boldione, and 30 days after 17β-boldenone undecylenate intra-muscular injection. This conjugate form was never detected in non-treated animals, confirming its status of definitive candidate marker for boldenone administration in calf.  相似文献   
36.
Despite the probable inhibitory effects of GnRH analogues on ovarian steroidogenesis in vitro, their association with assisted reproduction protocols shows favorable results. This suggests that there are important differences in the behaviors of these drugs when administered in vivo versus in vitro. To clarify these differences, this study was designed to analyze the effect of leuprolide acetate (LA) on ovarian steroidogenesis in women undergoing In Vitro Fertilization (IVF). A prospective, randomized open label study was conducted on 14 women (26-35 years): seven receiving only gonadotrophins (Group 1) and seven receiving gonadotrophin plus LA at 1mg/day (Group 2). The LA in vivo effect was determined with serum and follicular fluid (FF) samples and via luteinized granulosa cell cultivation (GCC), where cells were obtained during oocyte retrieval after ovarian hyperstimulation. In vitro analysis was performed via addition of LA to GCC only for Group 1 (without LA) at progressively higher concentrations (0, 10(-12), 10(-9) and 10(-6)M). In vivo, the main observation was a reduction in androgen production in Group 2, represented by lower androstenedione production in FF (G1=6479+/-3458; G2=3021+/-1119 ng/ml; p=0.04) and a lower testosterone peak in GC at 96h (G1=0.64+/-0.12 ng/ml; G2=0.50+/-0.19 ng/ml; P=0.02), but a higher fertilization rate (G1=67%; G2=83%; p=0.009). In vitro, testosterone, estradiol and progesterone were also reduced by LA, even though this reduction occurred for progesterone only at the highest LA dosage (10(-6)M; 606.0+/-114.3 ng/ml versus 1524.0+/-246.5 ng/ml; p=0.02). Results show that LA reduces ovarian steroidogenesis in vivo by essentially inhibiting androgen synthesis; whereas, in vitro, ovarian steroidogenesis is reduced overall.  相似文献   
37.
38.
Large-scale codon re-encoding (i.e. introduction of a large number of synonymous mutations) is a novel method of generating attenuated viruses. Here, it was applied to the pathogenic flavivirus, tick-borne encephalitis virus (TBEV) which causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. Using an infectious clone of the Oshima 5–10 strain ("wild-type virus"), a cassette of 1.4kb located in the NS5 coding region, was modified by randomly introducing 273 synonymous mutations ("re-encoded virus"). Whilst the in cellulo replicative fitness of the re-encoded virus was only slightly reduced, the re-encoded virus displayed an attenuated phenotype in a laboratory mouse model of non-lethal encephalitis. Following intra-peritoneal inoculation of either 2.105 or 2.106 TCID50 of virus, the frequency of viraemia, neurovirulence (measured using weight loss and appearance of symptoms) and neuroinvasiveness (detection of virus in the brain) were significantly decreased when compared with the wild-type virus. Mice infected by wild-type or re-encoded viruses produced comparable amounts of neutralising antibodies and results of challenge experiments demonstrated that mice previously infected with the re-encoded virus were protected against subsequent infection by the wild-type virus. This constitutes evidence that a mammalian species can be protected against infection by a virulent wild-type positive-stranded RNA virus following immunisation with a derived randomly re-encoded strain. Our results demonstrate that random codon re-encoding is potentially a simple and effective method of generating live-attenuated vaccine candidates against pathogenic flaviviruses.  相似文献   
39.
Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase δ was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.Adeno-associated virus (AAV) is a human parvovirus that is currently used as a gene transfer vector (14). AAV particles consist of a small icosahedral capsid protecting a single 4.7-kb single-stranded DNA (ssDNA) genome with two open reading frames, rep and cap, surrounded by inverted terminal repeats (ITRs). The ITRs are the only sequences required in cis for genome replication and packaging. The rep gene encodes four nonstructural Rep proteins: Rep78, -68, -52, and -40. The two larger isoforms, Rep78 and -68, have origin binding, helicase, and site-specific endonuclease activities and are involved in AAV gene expression and genome processing, including replication and site-specific integration (39). The two smaller Rep isoforms are not required for AAV DNA replication but are involved in the control of viral gene expression and packaging of viral DNA (30).When wild-type (wt) AAV infects a cell in the absence of a helper virus, it enters latency. Latent AAV genomes persist in cells either as episomes or as integrated genomes, preferentially at a specific locus (named AAVS1) on human chromosome 19. In most instances, no detectable viral gene expression or genome replication occurs unless the cell is co- or superinfected by a helper virus, such as adenovirus, herpes simplex virus type 1 (HSV-1), or HSV-2. Under these conditions, AAV replication and assembly take place in large intranuclear domains called replication compartments (RCs) that frequently colocalize with replication domains formed by the helper virus itself (81). The viral genome replicates by leading-strand synthesis and generates new ssDNA molecules by a strand displacement mechanism that occurs after strand- and site-specific cleavage of viral DNA by Rep78/68 within the ITRs (39).Studies conducted on the relationship between AAV and its helper viruses are important not only to identify helper activities that can be used to produce recombinant AAV vectors but also to understand how AAV adapts its replication strategy to the helper virus and to the nuclear environment in general. Adenovirus helper functions have historically been the first and most extensively studied functions. These studies have shown that adenovirus helps AAV by stimulating viral gene expression and by enhancing AAV genome replication, mostly indirectly (19). Indeed, early studies showed that the adenovirus polymerase (E2b) is dispensable for AAV replication (8) and that the viral DNA-binding protein (DBP), the product of the E2a gene, is able to modestly enhance the processivity of AAV genome replication in vitro (77). More recently, the adenovirus proteins E1b55k and E4orf6 were shown to stimulate AAV genome replication by degrading the cellular Mre11/Rad50/Nbs1 (MRN) complex that restricts AAV genome replication during adenovirus coinfection (32). The concept that AAV genome replication can rely mostly, if not uniquely, on direct help from cellular factors was further strengthened by the demonstration that purified proteins such as replication protein A (RPA), replication factor C (RFC), proliferating cell nuclear antigen (PCNA), minichromosome maintenance (MCM) proteins, and DNA polymerase δ (Pol δ) were sufficient to replicate the AAV genome in vitro in the presence of Rep (40-41, 43). The involvement of these cellular proteins during AAV genome replication was also confirmed by the proteomic analysis of factors associated with Rep proteins during adenovirus-induced AAV replication (42).Interestingly, studies conducted on HSV-1 helper activities suggest that the strategy of AAV replication may vary depending on the helper virus. Indeed, previous studies showed that the HSV-1 helicase-primase (HP) complex (UL5/8/52) and DBP (ICP8) could replicate transfected AAV-2 plasmids (80) and that the helicase activity, but not primase activity, of the HP complex was required for this effect (62, 66). More recently, a comprehensive study of HSV-1 helper activities demonstrated that the HSV-1 immediate-early proteins ICP0, ICP4, and ICP22 could stimulate rep gene expression, probably by diminishing intrinsic antiviral effects (1, 18). In addition, the HSV-1 DNA polymerase encoded by UL30, along with its associated processivity factor (UL42), although not strictly required, was demonstrated to significantly increase AAV replication levels induced in the presence of the HP complex and ICP8. Interestingly, the HSV-1 HP complex, DBP, and polymerase were also shown to be sufficient to replicate AAV DNA in vitro in the presence of Rep proteins without any cellular protein (78). Altogether, these observations indicate that in the context of an HSV-1 coinfection, AAV relies extensively on viral activities provided by the helper that directly participate in AAV genome replication.To further elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis to identify the cellular and HSV-1 factors associated with Rep proteins and, consequently, potentially recruited within AAV RCs. To analyze Rep-associated proteins in the presence and absence of HSV-1 DNA replication, this analysis was performed using wt HSV-1 and an HSV-1 mutant in which the DNA polymerase encoded by the UL30 gene is absent (HSVΔUL30). This study resulted in the identification of approximately 60 cellular proteins, among which the largest functional categories corresponded to factors involved in DNA and RNA metabolism. Immunofluorescence analyses confirmed that in the presence of HSV-1, a basal set of cellular DNA replication enzymes, including RPA, RFC, and PCNA, was recruited within AAV RCs, with the exception of the MCM helicases. The cellular DNA polymerases, in particular Pol δ, were not identified by this analysis but subsequently were shown to be recruited in AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, our results indicate that AAV replication induced by HSV-1 is associated with the recruitment of DNA repair factors, including components of the MRN complex, the Ku proteins, PARP-1, and factors of the mismatch repair (MMR) pathway. Finally, several HSV-1 proteins, most notably the UL12 protein, were also identified within AAV RCs. Our analyses confirmed the association between UL12 and Rep and demonstrated for the first time that this viral exonuclease plays a critical role during AAV replication by enhancing the formation of discrete AAV replicative forms and the production of AAV particles.Altogether, these results indicate that in the presence of HSV-1, AAV may replicate by using a basal set of cellular DNA replication enzymes but also relies extensively on HSV-1-derived proteins for its replication, including UL12, a newly discovered helper factor. These results suggest that AAV may be able to differentially adapt its replication strategy to the nuclear environment induced by the helper virus.  相似文献   
40.

Background

Inherited ichthyoses represent a group of rare skin disorders characterized by scaling, hyperkeratosis and inconstant erythema, involving most of the tegument. Epidemiology remains poorly described. This study aims to evaluate the prevalence of inherited ichthyosis (excluding very mild forms) and its different clinical forms in France.

Methods

Capture – recapture method was used for this study. According to statistical requirements, 3 different lists (reference/competence centres, French association of patients with ichthyosis and internet network) were used to record such patients. The study was conducted in 5 areas during a closed period.

Results

The prevalence was estimated at 13.3 per million people (/M) (CI95%, [10.9 – 17.6]). With regard to autosomal recessive congenital ichthyosis, the prevalence was estimated at 7/M (CI 95% [5.7 – 9.2]), with a prevalence of lamellar ichthyosis and congenital ichthyosiform erythroderma of 4.5/M (CI 95% [3.7 – 5.9]) and 1.9/M (CI 95% [1.6 – 2.6]), respectively. Prevalence of keratinopathic forms was estimated at 1.1/M (CI 95% [0.9 – 1.5]). Prevalence of syndromic forms (all clinical forms together) was estimated at 1.9/M (CI 95% [1.6 – 2.6]).

Conclusions

Our results constitute a crucial basis to properly size the necessary health measures that are required to improve patient care and design further clinical studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号