首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   36篇
  2023年   1篇
  2022年   5篇
  2021年   7篇
  2020年   7篇
  2019年   8篇
  2018年   4篇
  2017年   7篇
  2016年   14篇
  2015年   23篇
  2014年   20篇
  2013年   30篇
  2012年   26篇
  2011年   35篇
  2010年   11篇
  2009年   18篇
  2008年   18篇
  2007年   22篇
  2006年   16篇
  2005年   9篇
  2004年   23篇
  2003年   15篇
  2002年   7篇
  2001年   8篇
  2000年   4篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   2篇
  1992年   9篇
  1991年   1篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1973年   2篇
  1969年   1篇
  1963年   2篇
排序方式: 共有415条查询结果,搜索用时 31 毫秒
31.
Costly punishment prevails in intergroup conflict   总被引:1,自引:0,他引:1  
Understanding how societies resolve conflicts between individual and common interests remains one of the most fundamental issues across disciplines. The observation that humans readily incur costs to sanction uncooperative individuals without tangible individual benefits has attracted considerable attention as a proximate cause as to why cooperative behaviours might evolve. However, the proliferation of individually costly punishment has been difficult to explain. Several studies over the last decade employing experimental designs with isolated groups have found clear evidence that the costs of punishment often nullify the benefits of increased cooperation, rendering the strong human tendency to punish a thorny evolutionary puzzle. Here, we show that group competition enhances the effectiveness of punishment so that when groups are in direct competition, individuals belonging to a group with punishment opportunity prevail over individuals in a group without this opportunity. In addition to competitive superiority in between-group competition, punishment reduces within-group variation in success, creating circumstances that are highly favourable for the evolution of accompanying group-functional behaviours. We find that the individual willingness to engage in costly punishment increases with tightening competitive pressure between groups. Our results suggest the importance of intergroup conflict behind the emergence of costly punishment and human cooperation.  相似文献   
32.

Background

Asthma leads to structural changes in the airways, including the modification of extracellular matrix proteins such as tenascin-C. The role of tenascin-C is unclear, but it might act as an early initiator of airway wall remodelling, as its expression is increased in the mouse and human airways during allergic inflammation. In this study, we examined whether Th1 or Th2 cells are important regulators of tenascin-C in experimental allergic asthma utilizing mice with impaired Th1 (STAT4-/-) or Th2 (STAT6-/-) immunity.

Methods

Balb/c wildtype (WT), STAT4-/- and STAT6-/- mice were sensitized with intraperitoneally injected ovalbumin (OVA) followed by OVA or PBS airway challenge. Airway hyperreactivity (AHR) was measured and samples were collected. Real time PCR and immunohistochemistry were used to study cytokines and differences in the expression of tenascin-C. Tenascin-C expression was measured in human fibroblasts after treatment with TNF-α and IFN-γ in vitro.

Results

OVA-challenged WT mice showed allergic inflammation and AHR in the airways along with increased expression of TNF-α, IFN-γ, IL-4 and tenascin-C in the lungs. OVA-challenged STAT4-/- mice exhibited elevated AHR and pulmonary eosinophilia. The mRNA expression of TNF-α and IFN-γ was low, but the expression of IL-4 was significantly elevated in these mice. OVA-challenged STAT6-/- mice had neither AHR nor pulmonary eosinophilia, but had increased expression of mRNA for TNF-α, IFN-γ and IL-4. The expression of tenascin-C in the lungs of OVA-challenged STAT4-/- mice was weaker than in those of OVA-challenged WT and STAT6-/- mice suggesting that TNF-α and IFN-γ may regulate tenascin-C expression in vivo. The stimulation of human fibroblasts with TNF-α and IFN-γ induced the expression of tenascin-C confirming our in vivo findings.

Conclusions

Expression of tenascin-C is significantly attenuated in the airways of STAT4-/- mice, which may be due to the impaired secretion of TNF-α and IFN-γ in these mice.  相似文献   
33.
Aim Explanations of biogeographic diversity patterns have emphasized the role of large‐scale processes that determine species pools, whereas explanations of local patterns have not. We address the hypothesis that local diversity patterns are also primarily dependent on the size of the available species pools, which are expected to be large when the particular habitat type has been evolutionary more abundant, or in unproductive habitats due to shorter generation time and hence higher diversification rates. Location The Canary Islands. Methods We determined the geographic distribution and habitat requirements of all native vascular plant species in the Canary Islands. Species pools for each habitat type on particular islands were further split into two categories according to origin: either originating due to local diversification or due to natural immigration. The dependence of historical diversification and diversification rate on habitat type, area, age, altitude and distance to the mainland was tested with general linear mixed models weighed according to the Akaike information criterion. Results The largest portion of the local variation in plant species diversity was attributed to the historic (pre‐human) habitat area, although island age was also important. The diversification rate was higher in unproductive habitats of coastal scrub and summit vegetation. Main conclusion Our study supports the species pool hypothesis, demonstrating that natural local patterns of species diversity in different habitats mirror the abundance of those particular habitats in evolutionary history. It also supports the community‐level birth rate hypothesis, claiming that stressful conditions result in higher diversification rates. We conclude that much of the observed local variation in plant diversity can be attributed to the differing sizes of species pools evolved under particular habitat conditions, and that historic parameters are far more important determinants of local diversity than suggested by ecological theory.  相似文献   
34.
Bacterial biofilms resist host defenses and antibiotics partly because of their decreased metabolism. Some bacteria use proinflammatory cytokines, such as interleukin (IL)-1β, as cues to promote biofilm formation and to alter virulence. Although one potential bacterial IL-1β receptor has been identified, current knowledge of the bacterial IL-1β sensing mechanism is limited. In chronic biofilm infection, periodontitis, Aggregatibacter actinomycetemcomitans requires tight adherence (tad)-locus to form biofilms, and tissue destroying active lesions contain more IL-1β than inactive ones. The effect of IL-1β on the metabolic activity of A. actinomycetemcomitans biofilm was tested using alamarBlue™. The binding of IL-1β to A. actinomycetemcomitans cells was investigated using transmission electron microscopy and flow cytometry. To identify the proteins which interacted with IL-1β, different protein fractions from A. actinomycetemcomitans were run in native-PAGE and blotted using biotinylated IL-1β and avidin-HRP, and identified using mass spectroscopy. We show that although IL-1β slightly increases the biofilm formation of A. actinomycetemcomitans, it reduces the metabolic activity of the biofilm. A similar reduction was observed with all tad-locus mutants except the secretin mutant, although all tested mutant strains as well as wild type strains bound IL-1β. Our results suggest that IL-1β might be transported into the A. actinomycetemcomitans cells, and the trimeric form of intracellular ATP synthase subunit β interacted with IL-1β, possibly explaining the decreased metabolic activity. Because ATP synthase is highly conserved, it might universally enhance biofilm resistance to host defense by binding IL-1β during inflammation.  相似文献   
35.
36.
Complex formation of thiourea with copper takes place as an intermediate step in the preparation of copper sulfide thin films by spray pyrolysis starting from aqueous solutions of copper(II) chloride and thiourea. The stoichiometry of the complex and that of the resulting thin film primarily depends on the molecular ratio of the starting materials. For comparison, the structures of all copper(I) thiourea complexes found in the Cambridge Structural Database are classified in this paper. In addition, syntheses, structural (single crystal XRD also at low temperature 193 K) and spectroscopic studies (FTIR and Raman) of six copper-thiourea complexes are now reported. The copper to thiourea stoichiometric ratio is 1:3 in four of these complexes, but their structures are basically different as dimerization or polymer formation takes place depending on whether the water of crystallisation is present or absent. The structure of bis(μ-thiourea)tetrakis(thiourea)dicopper(I) dichloride dihydrate, [Cu2(tu)6]Cl2 · 2H2O (1) was determined at room and also at low temperature. Bis(μ-thiourea)tetrakis(thiourea)dicopper(I) dibromide dihydrate, [Cu2(tu)6]Br2 · 2H2O (2) is isomorphous with 1, like the anhydrous compounds chlorotris(thiourea)copper(I), [Cu(tu)3]Cl (3) and bromotris(thiourea)copper(I), [Cu(tu)3]Br (4) are isomorphous. In the third isomorphous pair of complexes the copper to thiourea stoichiometric ratio is 1:1, viz. chloro(thiourea)copper(I) hemihydrate, [Cu(tu)]Cl · 0.5H2O (5) and bromo(thiourea)copper(I) hemihydrate, [Cu(tu)]Br · 0.5H2O (6). During the preparation of chloro(thiourea)copper(I) hemihydrate (5) a reaction by product α,α-dithiobisformamidinium dichloride, [SC(NH2)2]2Cl2 (7) was identified and structurally characterized which made it possible to suggest a reaction path leading to complex formation.  相似文献   
37.
The Sonic hedgehog (Shh) signaling pathway controls a variety of developmental processes and is implicated in tissue homeostasis maintenance and neurogenesis in adults. Recently, we identified Ulk3 as an active kinase able to positively regulate Gli proteins, mediators of the Shh signaling in mammals. Here, we provide several lines of evidence that Ulk3 participates in the transduction of the Shh signal also independently of its kinase activity. We demonstrate that Ulk3 through its kinase domain interacts with Suppressor of Fused (Sufu), a protein required for negative regulation of Gli proteins. Sufu blocks Ulk3 autophosphorylation and abolishes its ability to phosphorylate and positively regulate Gli proteins. We show that Shh signaling destabilizes the Sufu-Ulk3 complex and induces the release of Ulk3. We demonstrate that the Sufu-Ulk3 complex, when co-expressed with Gli2, promotes generation of the Gli2 repressor form, and that reduction of the Ulk3 mRNA level in Shh-responsive cells results in higher potency of the cells to transmit the Shh signal. Our data suggests a dual function of Ulk3 in the Shh signal transduction pathway and propose an additional way of regulating Gli proteins by Sufu, through binding to and suppression of Ulk3.  相似文献   
38.
39.
Question: How is tundra vegetation related to climatic, soil chemical, geological variables and grazing across a very large section of the Eurasian arctic area? We were particularly interested in broad‐scale vegetation‐environment relationships and how well do the patterns conform to climate‐vegetation schemes. Material and Methods: We sampled vegetation in 1132 plots from 16 sites from different parts of the Eurasian tundra. Clustering and ordination techniques were used for analysing compositional patterns. Vegetation‐environment relationships were analysed by fitting of environmental vectors and smooth surfaces onto non‐metric multidimensional scaling scattergrams. Results: Dominant vegetation differentiation was associated with a complex set of environmental variables. A general trend differentiated cold and continental areas from relatively warm and weakly continental areas, and several soil chemical and physical variables were associated with this broad‐scaled differentiation. Especially soil chemical variables related to soil acidity (pH, Ca) showed linear relationships with the dominant vegetation gradient. This was closely related to increasing cryoperturbation, decreasing precipitation and cooler conditions. Remarkable differences among relatively adjacent sites suggest that local factors such as geological properties and lemming grazing may strongly drive vegetation differentiation. Conclusions: Vegetation differentiation in tundra areas conforms to a major ecocline underlain by a complex set of environmental gradients, where precipitation, thermal conditions and soil chemical and physical processes are coupled. However, local factors such as bedrock conditions and lemming grazing may cause marked deviations from the general climate‐vegetation models. Overall, soil chemical factors (pH, Ca) turned out to have linear relationship with the broad‐scale differentiation of arctic vegetation.  相似文献   
40.
Recombinant heterotrimeric G-protein αi1, αi2 and αi3 subunits were purified in GDP-depleting conditions by affinity chromatography using StrepII-tagged β1γ2 subunits. Real-time monitoring of fluorescence anisotropy of Bodipy-FL-GTPγS was used for characterization of nucleotide binding properties and inactivation of the purified proteins. All GDP-depleted αi were unstable at room temperature and therefore nucleotide binding could be characterized only in a nonequilibrium state. In comparison to Mg2+, Mn2+ inhibited nucleotide binding to all αi-heterotrimers studied and accelerated nucleotide release. Mn2+ had stabilizing effect on the nucleotide free state of the αi1 subunit, whereas both Mn2+ as well as G-protein activation by mastoparan destabilized the αi2 subunit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号