首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4523篇
  免费   363篇
  国内免费   1篇
  2022年   20篇
  2021年   65篇
  2020年   46篇
  2019年   42篇
  2018年   68篇
  2017年   56篇
  2016年   110篇
  2015年   159篇
  2014年   181篇
  2013年   265篇
  2012年   335篇
  2011年   356篇
  2010年   213篇
  2009年   209篇
  2008年   294篇
  2007年   285篇
  2006年   286篇
  2005年   253篇
  2004年   242篇
  2003年   248篇
  2002年   247篇
  2001年   46篇
  2000年   38篇
  1999年   52篇
  1998年   62篇
  1997年   41篇
  1996年   41篇
  1995年   40篇
  1994年   35篇
  1993年   31篇
  1992年   27篇
  1991年   23篇
  1990年   34篇
  1989年   23篇
  1988年   20篇
  1987年   20篇
  1986年   16篇
  1985年   20篇
  1984年   20篇
  1983年   19篇
  1982年   17篇
  1981年   19篇
  1980年   11篇
  1979年   18篇
  1978年   14篇
  1977年   14篇
  1976年   19篇
  1975年   14篇
  1974年   17篇
  1972年   13篇
排序方式: 共有4887条查询结果,搜索用时 31 毫秒
981.
Mast cells (MC) and myeloid dendritic cells (DC) act proximally in detecting and processing antigens and immune insults. We sought to understand their comparative dynamic behavior with respect to the airway epithelium in the steady state and in response to an allergic stimulus in mouse trachea. We devised methods to label MC in living trachea and to demonstrate that MC and DC occupy distinct layers of the tracheal mucosa, with DC being closer to the lumen. DC numbers doubled after allergen challenge, but MC numbers remained stable. MC and DC migrated minimally in either steady state or allergen-challenge conditions, and their interactions with one another appeared to be stochastic and relatively infrequent. While DC, unlike MC, exhibited probing behaviors involving dendrites, these projections did not cross the epithelium into the airway lumen. MC typically were located too far from the epithelial surface to contact the tracheal lumen. However, MC had protrusions toward and into blood vessels, likely to load with IgE. Thus, DC and MC occupy distinct niches and engage in sessile surveillance in the mouse trachea. Little or no access of these cell types to the airway lumen suggests that trans-epithelial transport of proteins in the steady state would be required for them to access luminal antigens.  相似文献   
982.
983.
Our studies examined the molecular mechanisms by which the novel cancer therapeutic GZ17-6.02 (NCT03775525) killed GI tumor cells. TZ17-6.02 activated ATM which was responsible for increased phosphorylation of nuclear γH2AX and AMPKα T172. ATM-AMPK signaling was responsible for the subsequent inactivation of mTORC1 and mTORC2, dephosphorylation of ULK1 S757, and increased phosphorylation of ULK1 S317 and of ATG13 S318, which collectively caused enhanced autophagosome formation. GZ17-6.02 interacted with 5-fluorouracil in an additive to greater than additive fashion to kill all of the tested GI tumor cell types. This was associated with greater ATM activation and a greater mammalian target of rapamycin inactivation and autophagosome induction. As a result, autophagy-dependent degradation of multiple histone deacetylase (HDAC) proteins and chaperone proteins occurred. Loss of HDAC expression was causal in reduced expression of programed death ligand 1 (PD-L1), ornithine decarboxylase, and indole amine 2,3-dioxygenase (IDO1) and in the elevated expression of major histocompatibility complex Class IA (MHCA). Treatment with GZ17-6.02 also resulted in enhanced efficacy of a subsequently administered anti-PD1 checkpoint inhibitory antibody. Thus, the primary mode of GZ17-6.02 action is to induce a DNA damage response concomitant with ATM activation, that triggers a series of interconnected molecular events that result in tumor cell death and enhanced immunogenicity.  相似文献   
984.
Chemotactic migration is a fundamental behavior of cells and its regulation is particularly relevant in physiological processes such as organogenesis and angiogenesis, as well as in pathological processes such as tumor metastasis. The majority of chemotactic stimuli activate cell surface receptors that belong to the G protein-coupled receptor (GPCR) superfamily. Although the autophagy machinery has been shown to play a role in cell migration, its mode of regulation by chemotactic GPCRs remains largely unexplored. We found that ligand-induced activation of 2 chemotactic GPCRs, the chemokine receptor CXCR4 and the urotensin 2 receptor UTS2R, triggers a marked reduction in the biogenesis of autophagosomes, in both HEK-293 and U87 glioblastoma cells. Chemotactic GPCRs exert their anti-autophagic effects through the activation of CAPNs, which prevent the formation of pre-autophagosomal vesicles from the plasma membrane. We further demonstrated that CXCR4- or UTS2R-induced inhibition of autophagy favors the formation of adhesion complexes to the extracellular matrix and is required for chemotactic migration. Altogether, our data reveal a new link between GPCR signaling and the autophagy machinery, and may help to envisage therapeutic strategies in pathological processes such as cancer cell invasion.  相似文献   
985.
Holocarboxylase synthetase (HCS), catalyzing the covalent attachment of biotin, is ubiquitously represented in living organisms. Indeed, the biotinylation is a post-translational modification that allows the transformation of inactive biotin-dependent carboxylases, which are committed in fundamental metabolisms such as fatty acid synthesis, into their active holo form. Among other living organisms, plants present a peculiarly complex situation. In pea, HCS activity has been detected in three subcellular compartments and the systematic sequencing of the Arabidopsis genome revealed the occurrence of two hcs genes (hcs1 and hcs2). Hcs1 gene product had been previously characterized at molecular and biochemical levels. Here, by PCR amplification, we cloned an hcs2 cDNA from Arabidopsis thaliana (Ws ecotype) mRNA. We observed the occurrence of multiple cDNA forms which resulted from the alternative splicing of hcs2 mRNA. Furthermore, we evidenced a nucleotide polymorphism at the hcs2 gene within the Ws ecotype, which affected splicing of hcs2 mRNA. This contrasted sharply with the situation at hcs1 locus. However, this polymorphism had no apparent effect on total HCS activity in planta. Finally, hcs2 mRNAs were found 4-fold less abundant than hcs1 mRNA and the most abundant hcs2 mRNA spliced variant should code for a truncated protein. We discuss the possible role of such a multiplicity of putative HCS proteins in plants and discuss the involvement of each of hcs genes in the correct realization of biotinylation.  相似文献   
986.
987.
988.
Abstract: This article reports an assessment of the global warming potential associated with the life cycle of a biopolymer (poly(hydroxyalkanoate) or PHA) produced in genetically engineered corn developed by Monsanto. The grain corn is harvested in a conventional manner, and the polymer is extracted from the corn stover (i.e., residues such as stalks, leaves and cobs), which would be otherwise left on the field. While corn farming was assessed based on current practice, four different hypothetical PHA production scenarios were tested for the extraction process. Each scenario differed in the energy source used for polymer extraction and compounding, and the results were compared to polyethylene (PE). The first scenario involved burning of the residual biomass (primarily cellulose) remaining after the polymer was extracted from the stover. In the three other scenarios, the use of conventional energy sources of coal, oil, and natural gas were investigated. This study indicates that an integrated system, wherein biomass energy from corn stover provides energy for polymer processing, would result in a better greenhouse gas profile for PHA than for PE. However, plant-based PHA production using fossil fuel sources provides no greenhouse gas advantage over PE, in fact scoring worse than PE. These results are based on a "cradle-to-pellet" modeling as the PHA end-of-life was not quantitatively studied due to complex issues surrounding the actual fate of postconsumer PHA.  相似文献   
989.
The fine structure of the rat parietal cell was studied, both at rest and after stimulation by refeeding or insulin administration. Experiments on fixation procedures showed that whenever the fixative contained sucrose at a concentration higher than 0.2 M, the system of cytoplasmic membranes was clearly tubular in arrangement, whereas the omission of sucrose in the fixative usually resulted in a vesicular structure. The study with the high-voltage electron microscope of thick sections prepared by conventional techniques or by impregnation with zinc iodide-osmium (ZIO) revealed that the tubules are grouped into fascicles, and that these form a feltwork that is especially thick toward the cell apex. The development of the secretory canaliculus after stimulation appears to take place by an in situ remodeling of the cytoplasmic domain occupied by the tubular system. Cells examined after short periods of stimulation (5-15 min) showed images of the tubular system and of the canalicular structure which differed both from the nonstimulated and from the fully active (30-45 min of stimulation) cell. These features include the formation of wide cisternae and of pericanalicular cytoplasmic trabeculae or laminae, whose fine structure bears close resemblance to that of the intracanalicular processes in the same cells. These images can be ordered into a hypothetical sequence which is proposed as a model to explain the transformation of the tubular system and intervening cytoplasmic matrix into secretory canaliculus.  相似文献   
990.
Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960–1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976–1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores.The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean-annual flow. Thus, northern San Francisco Bay appears to be an estuary in between the two extremes and is shifted closer to one extreme or the other depending on interannual variations in river flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号