首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4557篇
  免费   369篇
  4926篇
  2022年   41篇
  2021年   66篇
  2020年   46篇
  2019年   42篇
  2018年   71篇
  2017年   58篇
  2016年   110篇
  2015年   166篇
  2014年   186篇
  2013年   278篇
  2012年   348篇
  2011年   358篇
  2010年   213篇
  2009年   210篇
  2008年   292篇
  2007年   290篇
  2006年   286篇
  2005年   252篇
  2004年   240篇
  2003年   251篇
  2002年   251篇
  2001年   50篇
  2000年   41篇
  1999年   48篇
  1998年   64篇
  1997年   42篇
  1996年   40篇
  1995年   41篇
  1994年   35篇
  1993年   28篇
  1992年   28篇
  1991年   23篇
  1990年   29篇
  1989年   20篇
  1988年   15篇
  1987年   18篇
  1985年   19篇
  1984年   19篇
  1983年   18篇
  1982年   17篇
  1981年   17篇
  1980年   12篇
  1979年   16篇
  1978年   13篇
  1977年   13篇
  1976年   18篇
  1975年   13篇
  1974年   17篇
  1972年   14篇
  1969年   9篇
排序方式: 共有4926条查询结果,搜索用时 15 毫秒
21.
Cell resistance to low doses of paclitaxel (Taxol) involves a modulation of microtubule (MT) dynamics. We applied a proteomic approach based on 2-DE coupled with MS to identify changes in the MT environment of Taxol-resistant breast cancer cells. Having established a proteomic pattern of the microtubular proteins extracted from MDA-MB-231 cells, we verified by Western blotting that in resistant cells, α- and β-tubulins (more specifically the βIII and βIV isotypes) increased. Interestingly, four septins (SEPT2, 8, 9 and 11), which are GTPases involved in cytokinesis and in MT/actin cytoskeleton organization, were overexpressed and enriched in the MT environment of Taxol-resistant cells compared to their sensitive counterpart. Changes in the MT proteome of resistant cells also comprised increased kinesin-1 heavy chain expression and recruitment on MTs while dynein light chain-1 was downregulated. Modulation of motor protein recruitment around MTs might reflect their important role in controlling MT dynamics via the organization of signaling pathways. The identification of proteins previously unknown to be linked to taxane-resistance could also be valuable to identify new biological markers of resistance.  相似文献   
22.
23.
Vibrational circular dichroism (VCD) spectroscopy was used to investigate the solution conformations of cyclosporins A, C, D, G, and H in CDCl(3), in the amide I and NH/OH-stretching regions, and their corresponding magnesium complexes in CD(3)CN, in the amide I region. VCD spectra are sensitive to the chiral arrangement of Cdbond;O and NH bonds in this cyclic undecapeptide. Calculations of molecular geometries, as well as IR and VCD intensities of model cyclosporin fragments that include the intramolecular hydrogen bonds of the crystal conformations of cyclosporins A and H (CsA and CsH), were carried out at the density functional theory (DFT; BPW91 functional/6-31G* basis set) level. The good agreement between IR and VCD spectra from experiment and DFT calculations provides evidence that the crystal conformation of CsA is dominant in CDCl(3) solution; CsH, however, assumes both an intramolecularly hydrogen-bonded crystal conformation and more open forms in solution. Comparisons of the experimental and calculated VCD spectra in the NH/OH-stretching region of the noncomplexed cyclosporins indicate that conformers with both free and hydrogen-bonded NH and OH groups are present in solution. Differences between the IR and VCD spectra for the metal-free and magnesium-complexed cyclosporins are indicative of strong interactions between cyclosporins and magnesium ions.  相似文献   
24.
25.
Understanding the factors that influence the success of ecologically and economically damaging biological invasions is of prime importance. Recent studies have shown that invasive populations typically exhibit minimal, if any, reductions in genetic diversity, suggesting that large founding populations and/or multiple introductions are required for the success of biological invasions, consistent with predictions of the propagule pressure hypothesis. Through population genetic analysis of neutral microsatellite markers and a gene experiencing balancing selection, we demonstrate that the solitary bee Lasioglossum leucozonium experienced a single and severe bottleneck during its introduction from Europe. Paradoxically, the success of L. leucozonium in its introduced range occurred despite the severe genetic load caused by single-locus complementary sex-determination that still turns 30% of female-destined eggs into sterile diploid males, thereby substantially limiting the growth potential of the introduced population. Using stochastic modeling, we show that L. leucozonium invaded North America through the introduction of a very small number of propagules, most likely a singly-mated female. Our results suggest that chance events and ecological traits of invaders are more important than propagule pressure in determining invasion success, and that the vigilance required to prevent invasions may be considerably greater than has been previously considered.  相似文献   
26.
27.
In response to transforming growth factor beta (TGF-beta), Smad4 forms complexes with activated Smad2 and Smad3, which accumulate in the nucleus, where they both positively and negatively regulate TGF-beta target genes. Mutation or deletion of Smad4 is found in about 50% of pancreatic tumors and in about 15% of colorectal tumors. As Smad4 is a central component of the TGF-beta/Smad pathway, we have determined whether Smad4 is absolutely required for all TGF-beta responses, to evaluate the effect of its loss during human tumor development. We have generated cell lines from the immortalized human keratinocyte cell line HaCaT or the pancreatic tumor cell line Colo-357, which stably express a tetracyline-inducible small interfering RNA targeted against Smad4. In response to tetracycline, Smad4 expression is effectively silenced. Large-scale microarray analysis identifies two populations of TGF-beta target genes that are distinguished by their dependency on Smad4. Some genes absolutely require Smad4 for their regulation, while others do not. Functional analysis also indicates a differential Smad4 requirement for TGF-beta-induced functions; TGF-beta-induced cell cycle arrest and migration, but not epithelial-mesenchymal transition, are abolished after silencing of Smad4. Altogether our results suggest that loss of Smad4 might promote TGF-beta-mediated tumorigenesis by abolishing tumor-suppressive functions of TGF-beta while maintaining some tumor-promoting TGF-beta responses.  相似文献   
28.
Human moral judgement may have evolved to maximize the individual''s welfare given parochial culturally constructed moral systems. If so, then moral condemnation should be more severe when transgressions are recent and local, and should be sensitive to the pronouncements of authority figures (who are often arbiters of moral norms), as the fitness pay-offs of moral disapproval will primarily derive from the ramifications of condemning actions that occur within the immediate social arena. Correspondingly, moral transgressions should be viewed as less objectionable if they occur in other places or times, or if local authorities deem them acceptable. These predictions contrast markedly with those derived from prevailing non-evolutionary perspectives on moral judgement. Both classes of theories predict purportedly species-typical patterns, yet to our knowledge, no study to date has investigated moral judgement across a diverse set of societies, including a range of small-scale communities that differ substantially from large highly urbanized nations. We tested these predictions in five small-scale societies and two large-scale societies, finding substantial evidence of moral parochialism and contextual contingency in adults'' moral judgements. Results reveal an overarching pattern in which moral condemnation reflects a concern with immediate local considerations, a pattern consistent with a variety of evolutionary accounts of moral judgement.  相似文献   
29.
Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H(2)Se/HSe(-/)Se(2-)). Among the genes whose deletion caused hypersensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O(2)-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The (?)OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O(2). Finally we showed that, in vivo, toxicity strictly depended on the presence of O(2). Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O(2)-dependent radical-based mechanism.  相似文献   
30.
Here, we report the systematic exploration and modeling of interactions between light and sugar signaling. The data set analyzed explores the interactions of sugar (sucrose) with distinct light qualities (white, blue, red, and far-red) used at different fluence rates (low or high) in etiolated seedlings and mature green plants. Boolean logic was used to model the effect of these carbon/light interactions on three target genes involved in nitrogen assimilation: asparagine synthetase (ASN1 and ASN2) and glutamine synthetase (GLN2). This analysis enabled us to assess the effects of carbon on light-induced genes (GLN2/ASN2) versus light-repressed genes (ASN1) in this pathway. New interactions between carbon and blue-light signaling were discovered, and further connections between red/far-red light and carbon were modeled. Overall, light was able to override carbon as a major regulator of ASN1 and GLN2 in etiolated seedlings. By contrast, carbon overrides light as the major regulator of GLN2 and ASN2 in light-grown plants. Specific examples include the following: Carbon attenuated the blue-light induction of GLN2 in etiolated seedlings and also attenuated the white-, blue-, and red-light induction of GLN2 and ASN2 in light-grown plants. By contrast, carbon potentiated far-red-light induction of GLN2 and ASN2 in light-grown plants. Depending on the fluence rate of far-red light, carbon either attenuated or potentiated light repression of ASN1 in light-grown plants. These studies indicate the interaction of carbon with blue, red, and far-red-light signaling and set the stage for further investigation into modeling this complex web of interacting pathways using systems biology approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号