首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3460篇
  免费   297篇
  3757篇
  2024年   4篇
  2023年   48篇
  2022年   97篇
  2021年   154篇
  2020年   115篇
  2019年   120篇
  2018年   105篇
  2017年   95篇
  2016年   160篇
  2015年   312篇
  2014年   306篇
  2013年   265篇
  2012年   352篇
  2011年   356篇
  2010年   192篇
  2009年   116篇
  2008年   161篇
  2007年   141篇
  2006年   134篇
  2005年   126篇
  2004年   74篇
  2003年   62篇
  2002年   69篇
  2001年   21篇
  2000年   11篇
  1999年   15篇
  1998年   16篇
  1997年   15篇
  1996年   3篇
  1995年   8篇
  1994年   5篇
  1993年   7篇
  1992年   7篇
  1991年   10篇
  1990年   8篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1976年   4篇
  1974年   2篇
  1972年   3篇
  1970年   2篇
  1940年   2篇
排序方式: 共有3757条查询结果,搜索用时 9 毫秒
51.
The Population Study of Women in Gothenburg, Sweden is an ongoing prospective study of female residents who were recruited from the local registry in 1968–1969 when they were 38–60 years old. The data presented here were collected from 361 healthy women who underwent a baseline physical examination including a supplementary dietary history interview and returned for a second general health examination 6 years later. This report identifies a subgroup of 57 women who were sedentary during their leisure time and appear to have been particularly susceptible to gaining weight as a function of the fat content of their diets. Specifically, longitudinal analysis of body weights in the whole sample revealed a statistical interaction between leisure-time physical activity and habitual dietary fat intake (energy-%), as reported at the baseline examination, in the prediction of subsequent weight change. Further stratified analysis suggested that weight changes were significantly dependent on dietary fat intake among the sedentary women only. High energy intake also predicted weight gain in the sedentary group, although the predictive value for a high-fat diet was of marginal significance after adjusting for total energy consumption. These results suggest that sedentary recreational activity plus a low-fat diet may have a combined contribution to weight change that is not equivalent to the sum of the separate effects. Such a synergy between two modifiable lifestyle factors seems highly relevant for prevention of obesity.  相似文献   
52.
53.
54.
55.
There is growing support for the general notion that the drivers of invasion success often shift from biotic to abiotic factors with increasing spatial scale. Most of this research, however, has been conducted on a single trophic level; i.e. it has primarily looked at how the diversity of native competitors may influence invasion success. Less attention has been paid to understanding how native prey diversity may influence the invasion success of exotic predators and whether such biotic factors are scale-dependent. We used a hierarchical spatial survey of 17 stream communities to test whether native prey diversity, along with native prey biomass, algal resource abundance and annual stream discharge, influenced the abundance of an exotic crayfish predator, and whether the importance of these factors were scale-dependent. We used a hierarchical generalized linear model to evaluate the influence of these community and stream characteristics on exotic crayfish abundance at both the transect scale (1 m2) and the stream scale (400 m2). Our results indicated that at the stream scale, high stream discharge significantly limited invader abundance. However, at the smaller transect scale, native prey biomass was a significant driver of invasion success and positively correlated with invader abundance. We suggest that our results add to the emerging pattern that abiotic processes are stronger determinants of invasion success at large spatial scales, whereas biotic processes become more important with decreasing spatial scale. However, for predator invasions, prey biomass, not prey diversity may be a more important for driver of invasion success at small spatial scales.  相似文献   
56.
Alzheimer’s disease (AD) is characterized by the appearance of amyloid‐β plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Using mass spectrometry, we have quantified the phosphoproteome of the CK‐p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. We identified a shared response involving Siglec‐F which was upregulated on a subset of reactive microglia. The human paralog Siglec‐8 was also upregulated on microglia in AD. Siglec‐F and Siglec‐8 were upregulated following microglial activation with interferon gamma (IFNγ) in BV‐2 cell line and human stem cell‐derived microglia models. Siglec‐F overexpression activates an endocytic and pyroptotic inflammatory response in BV‐2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine‐based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV‐2 cells. Collectively, our results point to an important role for mouse Siglec‐F and human Siglec‐8 in regulating microglial activation during neurodegeneration.  相似文献   
57.
Glycosylphosphatidylinositol (GPI) anchoring plays key roles in many biological processes by targeting proteins to the cell wall; however, its roles are largely unknown in plant pathogenic fungi. Here, we reveal the roles of the GPI anchoring in Magnaporthe oryzae during plant infection. The GPI-anchored proteins were found to highly accumulate in appressoria and invasive hyphae. Disruption of GPI7, a GPI anchor-pathway gene, led to a significant reduction in virulence. The Δgpi7 mutant showed significant defects in penetration and invasive growth. This mutant also displayed defects of the cell wall architecture, suggesting GPI7 is required for cell wall biogenesis. Removal of GPI-anchored proteins in the wild-type strain by hydrofluoric acid (HF) pyridine treatment exposed both the chitin and β-1,3-glucans to the host immune system. Exposure of the chitin and β-1,3-glucans was also observed in the Δgpi7 mutant, indicating GPI-anchored proteins are required for immune evasion. The GPI anchoring can regulate subcellular localization of the Gel proteins in the cell wall for appressorial penetration and abundance of which for invasive growth. Our results indicate the GPI anchoring facilitates the penetration of M. oryzae into host cells by affecting the cell wall integrity and the evasion of host immune recognition.  相似文献   
58.
To address the need for more holistic approaches to ecological management and restoration, we examine ecosystem interventions through the lens of systems thinking and in reference to systems archetypes, as developed in relation to organizational management in the business world. Systems thinking is a holistic approach to analysis that focuses on how a system's constituent parts interrelate and how systems work over time and within the context of larger systems. Systems archetypes represent patterns of behavior that have been observed repeatedly. These archetypes help relate commonly observed responses to environmental problems with their effect on important feedback processes to better anticipate connections between actions and results. They highlight situations where perceived solutions actually result in worse or unintended consequences, and where changing goals may be either appropriate or inappropriate. The archetypes can be applied to practical examples, and can provide guidance to help make appropriate intervention decisions in similar circumstances. Their use requires stepping back from immediately obvious management decisions and taking a more systemic view of the situation. A catalog of archetypes that describe common patterns of systems behavior may inform management by helping to diagnose system dynamics earlier and identifying interactions among them.  相似文献   
59.
Western boundary currents (WBCs) redistribute heat and oligotrophic seawater from the tropics to temperate latitudes, with several displaying substantial climate change‐driven intensification over the last century. Strengthening WBCs have been implicated in the poleward range expansion of marine macroflora and fauna, however, the impacts on the structure and function of temperate microbial communities are largely unknown. Here we show that the major subtropical WBC of the South Pacific Ocean, the East Australian Current (EAC), transports microbial assemblages that maintain tropical and oligotrophic (k‐strategist) signatures, to seasonally displace more copiotrophic (r‐strategist) temperate microbial populations within temperate latitudes of the Tasman Sea. We identified specific characteristics of EAC microbial assemblages compared with non‐EAC assemblages, including strain transitions within the SAR11 clade, enrichment of Prochlorococcus, predicted smaller genome sizes and shifts in the importance of several functional genes, including those associated with cyanobacterial photosynthesis, secondary metabolism and fatty acid and lipid transport. At a temperate time‐series site in the Tasman Sea, we observed significant reductions in standing stocks of total carbon and chlorophyll a, and a shift towards smaller phytoplankton and carnivorous copepods, associated with the seasonal impact of the EAC microbial assemblage. In light of the substantial shifts in microbial assemblage structure and function associated with the EAC, we conclude that climate‐driven expansions of WBCs will expand the range of tropical oligotrophic microbes, and potentially profoundly impact the trophic status of temperate waters.  相似文献   
60.
Land‐use and climate change are significantly affecting stream ecosystems, yet understanding of their long‐term impacts is hindered by the few studies that have simultaneously investigated their interaction and high variability among future projections. We modeled possible effects of a suite of 2030, 2060, and 2090 land‐use and climate scenarios on the condition of 70,772 small streams in the Chesapeake Bay watershed, United States. The Chesapeake Basin‐wide Index of Biotic Integrity, a benthic macroinvertebrate multimetric index, was used to represent stream condition. Land‐use scenarios included four Special Report on Emissions Scenarios (A1B, A2, B1, and B2) representing a range of potential landscape futures. Future climate scenarios included quartiles of future climate changes from downscaled Coupled Model Intercomparison Project ‐ Phase 5 (CMIP5) and a watershed‐wide uniform scenario (Lynch2016). We employed random forests analysis to model individual and combined effects of land‐use and climate change on stream conditions. Individual scenarios suggest that by 2090, watershed‐wide conditions may exhibit anywhere from large degradations (e.g., scenarios A1B, A2, and the CMIP5 25th percentile) to small degradations (e.g., scenarios B1, B2, and Lynch2016). Combined land‐use and climate change scenarios highlighted their interaction and predicted, by 2090, watershed‐wide degradation in 16.2% (A2 CMIP5 25th percentile) to 1.0% (B2 Lynch2016) of stream kilometers. A goal for the Chesapeake Bay watershed is to restore 10% of stream kilometers over a 2008 baseline; our results suggest meeting and sustaining this goal until 2090 may require improvement in 11.0%–26.2% of stream kilometers, dependent on land‐use and climate scenario. These results highlight inherent variability among scenarios and the resultant uncertainty of predicted conditions, which reinforces the need to incorporate multiple scenarios of both land‐use (e.g., development, agriculture, etc.) and climate change in future studies to encapsulate the range of potential future conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号