首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3398篇
  免费   278篇
  3676篇
  2024年   4篇
  2023年   46篇
  2022年   100篇
  2021年   150篇
  2020年   114篇
  2019年   115篇
  2018年   101篇
  2017年   91篇
  2016年   157篇
  2015年   301篇
  2014年   288篇
  2013年   264篇
  2012年   348篇
  2011年   353篇
  2010年   182篇
  2009年   118篇
  2008年   159篇
  2007年   146篇
  2006年   138篇
  2005年   127篇
  2004年   75篇
  2003年   56篇
  2002年   65篇
  2001年   16篇
  2000年   13篇
  1999年   17篇
  1998年   15篇
  1997年   15篇
  1995年   5篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1991年   10篇
  1990年   7篇
  1988年   4篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
  1969年   2篇
  1968年   2篇
  1934年   2篇
排序方式: 共有3676条查询结果,搜索用时 0 毫秒
41.
Lemoine  Melissa  Barluenga  Marta  Lucek  Kay  Mwaiko  Salome  Haesler  Marcel  Chapman  Lauren J.  Chapman  Colin A.  Seehausen  Ole 《Hydrobiologia》2019,832(1):297-315

Even though the idea that modes of speciation other than allopatric speciation are possible in nature is now widespread, compelling examples of ecological speciation in sympatry remain rare. We studied an undescribed radiation of haplochromine cichlids in a young crater lake in western Uganda, and in the small river that is nearby but has currently no known surface connection to the lake. We describe two different modes of speciation that occurred in this cichlid lineage within the past 1,500–10,000 years. Not constrained by gene flow, allopatric divergence between river and lake cichlids affects many different morphological traits as well as nuptial colouration—muted in the river, but intensified and polymorphic in lake cichlids—and neutral genetic differentiation. More surprisingly, we demonstrate a case for sympatric speciation within the small lake that is associated with dramatic differences in male breeding colouration (yellow with bright red-chest versus bright blue) and subtle differences in microhabitat, feeding regime and morphology. Reproductive isolation by assortative mating is suggested by significant differentiation between yellow and blue males in neutral markers of gene flow despite complete sympatry. We hypothesize speciation is mediated by divergent selection on sexual signalling between microhabitats.

  相似文献   
42.
The FGF signaling pathway plays essential roles in endochondral ossification by regulating osteoblast proliferation and differentiation, chondrocyte proliferation, hypertrophy, and apoptosis. FGF signaling is controlled by the complementary action of both positive and negative regulators of the signal transduction pathway. The Spry proteins are crucial regulators of receptor tyrosine kinase-mediated MAPK signaling activity. Sprys are expressed in close proximity to FGF signaling centers and regulate FGFR-ERK-mediated organogenesis. During endochondral ossification, Spry genes are expressed in prehypertrophic and hypertrophic chondrocytes. Using a conditional transgenic approach in chondrocytes in vivo, the forced expression of Spry1 resulted in neonatal lethality with accompanying skeletal abnormalities resembling thanatophoric dysplasia II, including increased apoptosis and decreased chondrocyte proliferation in the presumptive reserve and proliferating zones. In vitro chondrocyte cultures recapitulated the inhibitory effect of Spry1 on chondrocyte proliferation. In addition, overexpression of Spry1 resulted in sustained ERK activation and increased expression of p21 and STAT1. Immunoprecipitation experiments revealed that Spry1 expression in chondrocyte cultures resulted in decreased FGFR2 ubiquitination and increased FGFR2 stability. These results suggest that constitutive expression of Spry1 in chondrocytes results in attenuated FGFR2 degradation, sustained ERK activation, and up-regulation of p21Cip and STAT1 causing dysregulated chondrocyte proliferation and terminal differentiation.  相似文献   
43.
We report the purification and characterization of a nitrilase (E.C. 3.5.5.1) (Nit11764) essential for the assimilation of cyanide as the sole nitrogen source by the cyanotroph, Pseudomonas fluorescens NCIMB 11764. Nit11764, is a member of a family of homologous proteins (nitrile_sll0784) for which the genes typically reside in a conserved seven-gene cluster known as Nit1C. The physical properties and substrate specificity of Nit11764 resemble those of Nit6803, the current reference protein for the family, and the only true nitrilase that has been crystallized. The substrate binding pocket of the two enzymes places the substrate in direct proximity to the active site nucleophile (C160) and conserved catalytic triad (Glu44, Lys126). The two enzymes exhibit a similar substrate profile, however, for Nit11764, cinnamonitrile, was found to be an even better substrate than fumaronitrile the best substrate previously identified for Nit6803. A higher affinity for cinnamonitrile (Km 1.27 mM) compared to fumaronitrile (Km 8.57 mM) is consistent with docking studies predicting a more favorable interaction with hydrophobic residues lining the binding pocket. By comparison, 3,4-dimethoxycinnamonitrile was a poorer substrate the substituted methoxyl groups apparently hindering entry into the binding pocket. in situ 1H NMR studies revealed that only one of the two nitrile substituents in the dinitrile, fumaronitrile, was attacked yielding trans-3-cyanoacrylate (plus ammonia) as a product. The essentiality of Nit11764 for cyanotrophy remains uncertain given that cyanide itself is a poor substrate and the catalytic efficiencies for even the best of nitrile substrates (~5 × 103 M?1 s?1) is less than stellar.  相似文献   
44.
Protein phosphorylation plays a central role in creating a highly dynamic network of interacting proteins that reads and responds to signals from growth factors in the cellular microenvironment. Cells of the neural crest employ multiple signaling mechanisms to control migration and differentiation during development. It is known that defects in these mechanisms cause neuroblastoma, but how multiple signaling pathways interact to govern cell behavior is unknown. In a phosphoproteomic study of neuroblastoma cell lines and cell fractions, including endosomes and detergent-resistant membranes, 1622 phosphorylated proteins were detected, including more than half of the receptor tyrosine kinases in the human genome. Data were analyzed using a combination of graph theory and pattern recognition techniques that resolve data structure into networks that incorporate statistical relationships and protein-protein interaction data. Clusters of proteins in these networks are indicative of functional signaling pathways. The analysis indicates that receptor tyrosine kinases are functionally compartmentalized into distinct collaborative groups distinguished by activation and intracellular localization of SRC-family kinases, especially FYN and LYN. Changes in intracellular localization of activated FYN and LYN were observed in response to stimulation of the receptor tyrosine kinases, ALK and KIT. The results suggest a mechanism to distinguish signaling responses to activation of different receptors, or combinations of receptors, that govern the behavior of the neural crest, which gives rise to neuroblastoma.  相似文献   
45.
46.
A novel pyrrolobenzodiazepine dimer payload, SG3227, was rationally designed based on the naturally occurring antitumour compound sibiromycin. SG3227 was synthesized from a dimeric core in an efficient fashion. An unexpected room temperature Diels-Alder reaction occurred during the final step of the synthesis and was circumvented by use of an iodoacetamide conjugation moiety in place of a maleimide. The payload was successfully conjugated to trastuzumab and the resulting ADC exhibited potent activity against a HER2-expressing human cancer cell line in vitro.  相似文献   
47.
The Notch pathway comprises a signal transduction cascade required for the proper formation of multiple tissues during metazoan development. Originally described in Drosophila for its role in nervous system formation, the pathway has attracted much wider interest owing to its fundamental roles in a range of developmental and disease-related processes. Despite extensive analysis, Notch signaling is not completely understood and it appears that additional components of the pathway remain to be identified and characterized. Here, we describe a novel genetic strategy to screen for additional Notch pathway genes. The strategy combines partial loss of function for pathway activity with Enhancer-promoter (EP)-induced overexpression of random loci across the dorsoventral wing margin. Mastermind (Mam) is a nuclear component of the Notch signaling cascade. Using a GAL4-UAS-driven dominant-negative form of Mam, we created a genotype that exhibits a completely penetrant dominant wing-nicking phenotype. This phenotype was assayed for enhancement or suppression after outcrossing to several thousand EP lines. The screen identified known components or modifiers of Notch pathway function, as well as several potential new components. Our results suggest that a genetic screen that combines partial loss of function with random gene overexpression might be a useful strategy in the analysis of developmental pathways.  相似文献   
48.
The timing and order of divergences within the genus Rattus have, to date, been quite speculative. In order to address these important issues we sequenced six new whole mitochondrial genomes from wild-caught specimens from four species, Rattus exulans, Rattus praetor, Rattus rattus and Rattus tanezumi. The only rat whole mitochondrial genomes available previously were all from Rattus norvegicus specimens. Our phylogenetic and dating analyses place the deepest divergence within Rattus at approximately 3.5 million years ago (Mya). This divergence separates the New Guinean endemic R. praetor lineage from the Asian lineages. Within the Asian/Island Southeast Asian clade R. norvegicus diverged earliest at approximately 2.9Mya. R. exulans and the ancestor of the sister species R. rattus and R. tanezumi subsequently diverged at approximately 2.2Mya, with R. rattus and R. tanezumi separating as recently as approximately 0.4Mya. Our results give both a better resolved species divergence order and diversification dates within Rattus than previous studies.  相似文献   
49.
Concurrent exercise combines different modes of exercise (e.g., aerobic and resistance) into one training protocol, providing stimuli meant to increase muscle strength, aerobic capacity and mass. As disuse is associated with decrements in strength, aerobic capacity and muscle size concurrent training is an attractive modality for rehabilitation. However, interference between the signaling pathways may result in preferential improvements for one of the exercise modes. We recruited 18 young adults (10 ♂, 8 ♀) to determine if order of exercise mode during concurrent training would differentially affect gene expression, protein content and measures of strength and aerobic capacity after 2 weeks of knee-brace induced disuse. Concurrent exercise sessions were performed 3x/week for 6 weeks at gradually increasing intensities either with endurance exercise preceding (END>RES) or following (RES>END) resistance exercise. Biopsies were collected from the vastus lateralis before, 3 h after the first exercise bout and 48 h after the end of training. Concurrent exercise altered the expression of genes involved in mitochondrial biogenesis (PGC-1α, PRC, PPARγ), hypertrophy (PGC-1α4, REDD2, Rheb) and atrophy (MuRF-1, Runx1), increased electron transport chain complex protein content, citrate synthase and mitochondrial cytochrome c oxidase enzyme activity, muscle mass, maximum isometric strength and VO2peak. However, the order in which exercise was completed (END>RES or RES>END) only affected the protein content of mitochondrial complex II subunit. In conclusion, concurrent exercise training is an effective modality for the rehabilitation of the loss of skeletal muscle mass, maximum strength, and peak aerobic capacity resulting from disuse, regardless of the order in which the modes of exercise are performed.  相似文献   
50.
The nucleotide sequence from the 5′ terminus inward of one third of mouse α- and βmaj-globin messenger RNAs has been established. In addition, using 5′ 32P end-labeled mRNAs as substrates and S1 and T1 nucleases as probes for single-stranded regions, the secondary structures of mouse and rabbit α- and β-globin mRNAs have been analyzed. Our results indicate that the AUG initiator codon in both mouse and rabbit β-globin mRNA is quite susceptible to cleavage with S1 and T1 nucleases, suggesting that it resides in a single-stranded exposed region. In contrast, the initiator AUG in the α-globin mRNA of both species is inaccessible to cleavage, indicating that it is either buried by tertiary structure or is base-paired. Since the rate of initiation of protein synthesis with β-globin mRNA in rabbit reticulocyte is 30–40% faster than for α-globin mRNA, these results imply a possible correlation between the differential rates of initiation with these two mRNAs and the accessibility of the respective AUG initiator codons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号