首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   12篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   8篇
  2016年   5篇
  2015年   5篇
  2014年   9篇
  2013年   6篇
  2012年   8篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   9篇
  2004年   12篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1988年   2篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1973年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1954年   3篇
  1953年   2篇
  1951年   2篇
  1938年   1篇
  1936年   1篇
  1902年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
81.
82.
We summarize a long-term study of the effects of edge creation on establishment of the economically important arboreal palm Oenocarpus bacaba in an experimentally fragmented landscape in central Amazonia. Recruitment and mortality of large individuals (≥10 cm diameter-at-breast-height) were recorded within 21 1-ha plots in fragmented and intact forests for periods of up to 22 years. In addition, 12 small (0.7 × 14 m) sub-plots within each 1-ha plot were used to enumerate the abundance of seedlings and saplings (5–400 cm tall). On average, the recruitment of large trees was over two times faster near forest edges, leading to a sharp (90%) increase in the mean population density of large individuals near forest edges, whereas the density of larger trees remained constant in the forest interior. Overall seedling and sapling density was significantly lower in edge than interior plots, but edge plots had a much higher proportion of larger (>100 cm tall) saplings. Our findings demonstrate that forest edges can have complex effects on tree demography and that one must consider all tree life stages in order to effectively assess their effects on plant populations.  相似文献   
83.
84.
Increasing biomass in Amazonian forest plots   总被引:6,自引:0,他引:6  
A previous study by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data. We find that across 59 sites, the above-ground dry biomass in trees that are more than 10 cm in diameter (AGB) has increased since plot establishment by 1.22 +/- 0.43 Mg per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), or 0.98 +/- 0.38 Mg ha(-1) yr(-1) if individual plot values are weighted by the number of hectare years of monitoring. This significant increase is neither confounded by spatial or temporal variation in wood specific gravity, nor dependent on the allometric equation used to estimate AGB. The conclusion is also robust to uncertainty about diameter measurements for problematic trees: for 34 plots in western Amazon forests a significant increase in AGB is found even with a conservative assumption of zero growth for all trees where diameter measurements were made using optical methods and/or growth rates needed to be estimated following fieldwork. Overall, our results suggest a slightly greater rate of net stand-level change than was reported by Phillips et al. Considering the spatial and temporal scale of sampling and associated studies showing increases in forest growth and stem turnover, the results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional-scale carbon sink in old-growth Amazonian forests during the previous two decades.  相似文献   
85.
Cyclin D1 is expressed at abnormally high levels in many cancers and has been specifically implicated in the development of breast cancer. In this report we have extensively analyzed the cyclin D1 promoter in a variety of cancer cell lines that overexpress the protein and identified two critical regulatory elements (CREs), a previously identified CRE at –52 and a novel site at –30. In vivo footprinting experiments demonstrated factors binding at both sites. We have used a novel DNA-binding ligand, GL020924, to target the site at –30 (–30–21) of the cyclin D1 promoter in MCF7 breast cancer cells. A binding site for this novel molecule was constructed by mutating 2 bp of the wild-type cyclin D1 promoter at the –30–21 site. Treatment with GL020924 specifically inhibited expression of the targeted cyclin D1 promoter construct in MCF7 cells in a concentration-dependent manner, thus validating the –30–21 site as a target for minor groove-binding ligands. In addition, this result validates our approach to regulating the expression of genes implicated in disease by targeting small DNA-binding ligands to key regulatory elements in the promoters of those genes.  相似文献   
86.
87.
88.
Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species’ hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.  相似文献   
89.
Emerging infectious diseases are considered to be a growing threat to human and wildlife health. Such diseases might be facilitated by anthropogenic land-use changes that cause novel juxtapositions of different habitats and species and result in new interchanges of vectors, diseases, and hosts. To search for such effects in tropical Australia, we sampled mosquito populations across anthropogenic disturbance gradients of grassland, artificial rainforest edge, and rainforest interior. From >15,000 captured mosquitoes, we identified 26 species and eight genera. Surprisingly, there was no significant difference in community composition or species richness between forest edges and grasslands, but both differed significantly from rainforest interiors. Mosquito species richness was elevated in grasslands relative to the rainforest habitats. Seven species were unique to grasslands and edges, with another 13 found across all habitats. Among the three most abundant species, Culex annulirostris occurred in all habitat types, whereas Verrallina lineata and Cx. pullus were more abundant in forest interiors. Our findings suggest that the creation of anthropogenic grasslands adjacent to rainforests may increase the susceptibility of species in both habitats to transmission of novel diseases via observable changes and mixing of the vector community on rainforest edges.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号