首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17309篇
  免费   1427篇
  国内免费   7篇
  18743篇
  2024年   21篇
  2023年   131篇
  2022年   305篇
  2021年   536篇
  2020年   309篇
  2019年   400篇
  2018年   457篇
  2017年   352篇
  2016年   663篇
  2015年   1075篇
  2014年   1163篇
  2013年   1346篇
  2012年   1631篇
  2011年   1457篇
  2010年   932篇
  2009年   782篇
  2008年   1024篇
  2007年   1000篇
  2006年   895篇
  2005年   813篇
  2004年   778篇
  2003年   622篇
  2002年   620篇
  2001年   110篇
  2000年   94篇
  1999年   115篇
  1998年   127篇
  1997年   97篇
  1996年   91篇
  1995年   68篇
  1994年   61篇
  1993年   51篇
  1992年   49篇
  1991年   42篇
  1990年   44篇
  1989年   51篇
  1988年   40篇
  1987年   24篇
  1986年   23篇
  1985年   35篇
  1984年   35篇
  1983年   23篇
  1982年   20篇
  1981年   18篇
  1980年   21篇
  1979年   21篇
  1978年   14篇
  1976年   19篇
  1974年   15篇
  1970年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
Carbon and nitrogen are supplied by a variety of sources in the desert food web; both vascular and non-vascular plants and cyanobacteria supply carbon, and cyanobacteria and plant-associated rhizosphere bacteria are sources of biological nitrogen fixation. The objective of this study was to compare the relative influence of vascular plants and biological soil crusts on desert soil nematode and protozoan abundance and community composition. In the first experiment, biological soil crusts were removed by physical trampling. Treatments with crust removed had fewer nematodes and a greater relative ratio of bacterivores to microphytophages than treatments with intact crust. However, protozoa composition was similar with or without the presence of crusts. In a second experiment, nematode community composition was characterized along a spatial gradient away from stems of grasses or shrubs. Although nematodes generally occurred in increasing abundance nearer to plant stems, some genera (such as the enrichment-type Panagrolaimus) increased disproportionately more than others (such as the stress-tolerant Acromoldavicus). We propose that the impact of biological soil crusts and desert plants on soil microfauna, as reflected in the community composition of microbivorous nematodes, is a combination of carbon input, microclimate amelioration, and altered soil hydrology.  相似文献   
162.
Asthma originates from genetic and environmental factors with about half the risk of disease attributable to heritable causes. Genome-wide association studies, mostly in populations of European ancestry, have identified numerous asthma-associated single nucleotide polymorphisms (SNPs). Studies in populations with diverse ancestries allow both for identification of robust associations that replicate across ethnic groups and for improved resolution of associated loci due to different patterns of linkage disequilibrium between ethnic groups. Here we report on an analysis of 745 African-American subjects with asthma and 3,238 African-American control subjects from the Candidate Gene Association Resource (CARe) Consortium, including analysis of SNPs imputed using 1,000 Genomes reference panels and adjustment for local ancestry. We show strong evidence that variation near RAD50/IL13, implicated in studies of European ancestry individuals, replicates in individuals largely of African ancestry. Fine mapping in African ancestry populations also refined the variants of interest for this association. We also provide strong or nominal evidence of replication at loci near ORMDL3/GSDMB, IL1RL1/IL18R1, and 10p14, all previously associated with asthma in European or Japanese populations, but not at the PYHIN1 locus previously reported in studies of African-American samples. These results improve the understanding of asthma genetics and further demonstrate the utility of genetic studies in populations other than those of largely European ancestry.  相似文献   
163.
Seasonal tropical forests exhibit a great diversity of leaf exchange patterns. Within these forests variation in the timing and intensity of leaf exchange may occur within and among individual trees and species, as well as from year to year. Understanding what generates this diversity of phenological behaviour requires a mechanistic model that incorporates rate-limiting physiological conditions, environmental cues, and their interactions. In this study we examined long-term patterns of leaf flushing for a large proportion of the hundreds of tree species that co-occur in a seasonal tropical forest community in western Thailand. We used the data to examine community-wide variation in deciduousness and tested competing hypotheses regarding the timing and triggers of leaf flushing in seasonal tropical forests. We developed metrics to quantify the nature of deciduousness (its magnitude, timing and duration) and its variability among survey years and across a range of taxonomic levels. Tree species varied widely in the magnitude, duration, and variability of leaf loss within species and across years. The magnitude of deciduousness ranged from complete crown loss to no crown loss. Among species that lost most of their crown, the duration of deciduousness ranged from 2 to 21 weeks. The duration of deciduousness in the majority of species was considerably shorter than in neotropical forests with similar rainfall periodicity. While the timing of leaf flushing varied among species, most (∼70%) flushed during the dry season. Leaf flushing was associated with changes in photoperiod in some species and the timing of rainfall in other species. However, more than a third of species showed no clear association with either photoperiod or rainfall, despite the considerable length and depth of the dataset. Further progress in resolving the underlying internal and external mechanisms controlling leaf exchange will require targeting these species for detailed physiological and microclimatic studies.  相似文献   
164.
Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens   总被引:1,自引:0,他引:1  
Mg2+ can potentially influence bacterial adhesion directly through effects on electrostatic interactions and indirectly by affecting physiology-dependent attachment processes. However, the effects of Mg2+ on biofilm structure are largely unknown. In this study, Pseudomonas fluorescens was used to investigate the influence of Mg2+ concentration (0, 0.1 and 1.0 mM MgCl2) on biofilm growth. Planktonic and attached cells were enumerated (based on DAPI staining) while biofilm structures were examined via confocal laser scanning microscopy and three-dimensional structures were reconstructed. Mg2+ concentration had no influence on growth of planktonic cells but, during biofilm formation, Mg2+ increased the abundance of attached cells. For attached cells, the influence of Mg2+ concentration changed over time, suggesting that the role of Mg2+ in bacterial attachment is complex and dynamic. Biofilm structures were heterogeneous and surface colonization and depth increased with increasing Mg2+ concentrations. Overall, for P. fluorescens, Mg2+ increased initial attachment and altered subsequent biofilm formation and structure.  相似文献   
165.
The limited stability of proteins in vitro and in vivo reduces their conversion into effective biopharmaceuticals. To overcome this problem several strategies can be exploited, as the conjugation of the protein of interest with polyethylene glycol, in most cases, improves its stability and pharmacokinetics. In this work, we report a biophysical characterization of the non-pegylated and of two different site-specific mono-pegylated forms of recombinant human methionyl-granulocyte colony stimulating factor (Met-G-CSF), a protein used in chemotherapy and bone marrow transplantation. In particular, we found that the two mono-pegylations of Met-G-CSF at the N-terminal methionine and at glutamine 135 increase the protein thermal stability, reduce the aggregation propensity, preventing also protein precipitation, as revealed by circular dichroism (CD), Fourier transform infrared (FTIR), intrinsic fluorescence spectroscopies and dynamic light scattering (DLS). Interestingly, the two pegylation strategies were found to drastically reduce the polydispersity of Met-G-CSF, when incubated under conditions favouring protein aggregation, as indicated by DLS measurements. Our in vitro results are in agreement with preclinical studies, underlining that preliminary biophysical analyses, performed in the early stages of the development of new biopharmaceutical variants, might offer a useful tool for the identification of protein variants with improved therapeutic values.  相似文献   
166.
In this study, we evaluated the in vitro activity of echinocandins, azoles, and amphotericin B alone and in combination against echinocandin/azole-sensitive and echinocandin/azole-resistant Candida glabrata isolates. Susceptibility tests were performed using the broth microdilution method in accordance with the Clinical and Laboratory Standards Institute document M27-A3. The checkerboard method was used to evaluate the fractional inhibitory concentration index of the interactions. Cross-resistance was observed among echinocandins; 15% of the isolates resistant to caspofungin were also resistant to anidulafungin and micafungin. Synergistic activity was observed in 70% of resistant C. glabrata when anidulafungin was combined with voriconazole or posaconazole. Higher (85%) synergism was found in the combination of caspofungin and voriconazole. The combinations of caspofungin with fluconazole, posaconazole and amphotericin B, micafungin with fluconazole, posaconazole and voriconazole, and anidulafungin with amphotericin B showed indifferent activities for the majority of the isolates. Anidulafungin combined with fluconazole showed the same percentage of synergism and indifference (45%). Antagonism was detected in 50% of isolates when micafungin was combined with amphotericin B. Combinations of echinocandins and antifungal azoles have great potential for in vivo assays which are required to evaluate the efficacy of these combinations against multidrug-resistant C. glabrata strains.  相似文献   
167.
It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues.  相似文献   
168.
A commercially available real-time, rapid PCR test was evaluated for its ability to detect Escherichia coli O157. Both the sensitivity and specificity of the assay were 99% for isolates in pure culture. The assay detected 1 CFU of E. coli O157:H7 g(-1) in artificially inoculated bovine feces following enrichment.  相似文献   
169.
The Janzen-Connell hypothesis explains the maintenance of tropical diversity through the interacting effects of parent-centered dispersal patterns and distance- and density-dependent propagule survival. These effects were thought to support regular spacing of species within tropical forest, enhancing diversity. One of the predictions of the hypothesis is that seed and seedling survival should improve with increased parental distance. Although there are many independent tests of this hypothesis for individual species, there are few synthetic studies that have brought these data together to test its validity across species. This paper reports the results of a meta-analysis of the effect of distance on enhancing propagule survival, employing an odds-ratio effect size metric. We found no general support for the distance-dependent prediction of the hypothesis, and conclude that further testing to explore this hypothesis as a diversity-maintaining mechanism is unnecessary. However, we did find that distance from parent slightly reduces survivorship in the temperate zone, as contrasted with the tropics, and we saw stronger evidence in support of the hypothesis for seedlings than for seeds. The phenomenon of enhanced propagule survival with distance from the parent may be important for the population biology of particular species, but it is not a general phenomenon across communities, life history stages or life forms.  相似文献   
170.
Conformational changes and protein dynamics play an important role in the catalytic efficiency of enzymes. Amide H/D exchange mass spectrometry (H/D exchange MS) is emerging as an efficient technique to study the local and global changes in protein structure and dynamics due to ligand binding, protein activation-inactivation by modification, and protein-protein interactions. By monitoring the selective exchange of hydrogen for deuterium along a peptide backbone, this sensitive technique probes protein motions and structural elements that may be relevant to allostery and function. In this report, several applications of H/D exchange MS are presented which demonstrate the unique capability of amide hydrogen/deuterium exchange mass spectrometry for examining dynamic and structural changes associated with enzyme catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号