首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25810篇
  免费   1968篇
  国内免费   10篇
  2024年   13篇
  2023年   173篇
  2022年   406篇
  2021年   765篇
  2020年   452篇
  2019年   548篇
  2018年   741篇
  2017年   581篇
  2016年   982篇
  2015年   1554篇
  2014年   1706篇
  2013年   2030篇
  2012年   2402篇
  2011年   2230篇
  2010年   1403篇
  2009年   1181篇
  2008年   1564篇
  2007年   1463篇
  2006年   1372篇
  2005年   1214篇
  2004年   1115篇
  2003年   954篇
  2002年   960篇
  2001年   166篇
  2000年   142篇
  1999年   160篇
  1998年   224篇
  1997年   165篇
  1996年   137篇
  1995年   100篇
  1994年   97篇
  1993年   77篇
  1992年   77篇
  1991年   55篇
  1990年   53篇
  1989年   62篇
  1988年   51篇
  1987年   27篇
  1986年   22篇
  1985年   35篇
  1984年   36篇
  1983年   28篇
  1982年   27篇
  1981年   27篇
  1980年   27篇
  1979年   25篇
  1978年   13篇
  1977年   12篇
  1976年   19篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Candida albicans is an opportunistic human fungal pathogen that causes systemic candidiasis as well as superficial mucosal candidiasis. In response to the host environment, C. albicans transitions between yeast and hyphal forms. In particular, hyphal growth is important in facilitating adhesion and invasion of host tissues, concomitant with the expression of various hypha-specific virulence factors. In previous work, we showed that the cyclic AMP (cAMP) signaling pathway plays a crucial role in morphogenic transitions and virulence of C. albicans by studying genes encoding adenylate cyclase-associated protein (CAP1) and high-affinity phosphodiesterase (PDE2) (Y. S. Bahn, J. Staab, and P. Sundstrom, Mol. Microbiol. 50:391-409, 2003; and Y. S. Bahn and P. Sundstrom, J. Bacteriol. 183:3211-3223, 2001). However, little is known about the downstream targets of the cAMP signaling pathway that are responsible for morphological transitions and the expression of virulence factors. Here, microarrays were probed with RNA from strains with hypoactive (cap1/cap1 null mutant), hyperactive (pde2/pde2 null mutant), and wild-type cAMP signaling pathways to provide insight into the molecular mechanisms of virulence that are regulated by cAMP and that are related to the morphogenesis of C. albicans. Genes controlling metabolic specialization, cell wall structure, ergosterol/lipid biosynthesis, and stress responses were modulated by cAMP during hypha formation. Phenotypic traits predicted to be regulated by cAMP from the profiling results correlated with the relative strengths of the mutants when tested for resistance to azoles and subjected to heat shock stress and oxidative/nitrosative stress. The results from this study provide important insights into the role of the cAMP signaling pathway not only in morphogenic transitions of C. albicans but also for adaptation to stress and for survival during host infections.  相似文献   
992.
RecQ helicases are essential for the maintenance of chromosome stability. In addition to DNA unwinding, some RecQ enzymes have an intrinsic DNA strand annealing activity. The function of this dual enzymatic activity and the mechanism that regulates it is, however, unknown. Here, we describe two quaternary forms of the human RECQ1 helicase, higher-order oligomers consistent with pentamers or hexamers, and smaller oligomers consistent with monomers or dimers. Size exclusion chromatography and transmission electron microscopy show that the equilibrium between the two assembly states is affected by single-stranded DNA (ssDNA) and ATP binding, where ATP or ATPγS favors the smaller oligomeric form. Our three-dimensional electron microscopy reconstructions of human RECQ1 reveal a complex cage-like structure of approximately 120 Å × 130 Å with a central pore. This oligomeric structure is stabilized under conditions in which RECQ1 is proficient in strand annealing. In contrast, competition experiments with the ATPase-deficient K119R and E220Q mutants indicate that RECQ1 monomers, or tight binding dimers, are required for DNA unwinding. Collectively, our findings suggest that higher-order oligomers are associated with DNA strand annealing, and lower-order oligomers with DNA unwinding.  相似文献   
993.
994.
995.
Insulin production in pancreatic beta cells is predominantly regulated through glucose control of proinsulin translation. Previously, this was shown to require sequences within the untranslated regions (UTRs) of the preproinsulin (ppI) mRNA. Here, those sequences were found to be sufficient for specific glucose-regulated proinsulin translation. Furthermore, an element 40-48 bp from the 5' end of the ppI mRNA specifically bound a factor present in islets of Langerhans. Glucose-responsive factor binding to this cis-element exhibited temporal and glucose-concentration-dependent patterns that paralleled proinsulin biosynthesis. Mutating this cis-element abolished the ability of ppI mRNA UTRs to confer glucose regulation upon translation. Like the rat 5'UTR, the human ppI 5'UTR conferred glucose regulation of translation. However alternative splicing of the human 5'UTR that disrupts the cis-element abolished glucose-regulated translation. These data indicate that glucose regulation of cis-element/trans-acting factor interaction is a key component of the mechanism by which glucose regulates insulin production.  相似文献   
996.
The Kluyveromyces lactis genes for sexual pheromones have been analyzed. The alpha-factor gene encodes a predicted polypeptide of 187 amino acid residues containing four tridecapeptide repeats (WSWITLRPGQPIF). A nucleotide blast search of the entire K. lactis genome sequence allowed the identification of the nonannotated putative a-pheromone gene that encodes a predicted protein of 33 residues containing one copy of the dodecapeptide a-factor (WIIPGFVWVPQC). The role of the K. lactis structural genes KlMFalpha1 and KlMFA1 in mating has been investigated by the construction of disruption mutations that totally eliminate gene functions. Mutants of both alleles showed sex-dependent sterility, indicating that these are single-copy genes and essential for mating. MATalpha, Klsst2 mutants, which, by analogy to Saccharomyces cerevisiae, are defective in Galpha-GTPase activity, showed increased sensitivity to synthetic alpha-factor and increased capacity to mate. Additionally, Klbar1 mutants (putatively defective in alpha-pheromone proteolysis) showed delay in mating but sensitivity to alpha-pheromone. From these results, it can be deduced that the K. lactis MATa cell produces the homolog of the S. cerevisiaealpha-pheromone, whereas the MATalpha cell produces the a-pheromone.  相似文献   
997.
The two forms of monoamine oxidase, monoamine oxidase A and monoamine oxidase B, have been associated with imidazoline-binding sites (type 2). Imidazoline ligands saturate the imidazoline-binding sites at nanomolar concentrations, but inhibit monoamine oxidase activity only at micromolar concentrations, suggesting two different binding sites [Ozaita A, Olmos G, Boronat MA, Lizcano JM, Unzeta M & García-Sevilla JA (1997) Br J Pharmacol121, 901-912]. When purified human monoamine oxidase A was used to examine the interaction with the active site, inhibition by guanabenz, 2-(2-benzofuranyl)-2-imidazoline and idazoxan was competitive with kynuramine as substrate, giving K(i) values of 3 microM, 26 microM and 125 microM, respectively. Titration of monoamine oxidase A with imidazoline ligands induced spectral changes that were used to measure the binding affinities for guanabenz (19.3 +/- 3.9 microM) and 2-(2-benzofuranyl)-2-imidazoline (49 +/- 8 microM). Only one type of binding site was detected. Agmatine, a putative endogenous ligand for some imidazoline sites, reduced monoamine oxidase A under anaerobic conditions, indicating that it binds close to the flavin in the active site. Flexible docking studies revealed multiple orientations within the large active site, including orientations close to the flavin that would allow oxidation of agmatine.  相似文献   
998.
999.
Extracellular vesicles are small (~50–200 nm diameter) membrane-bound structures released by cells from all domains of life. While vesicles are abundant in the oceans, their functions, both for cells themselves and the emergent ecosystem, remain a mystery. To better characterize these particles – a prerequisite for determining function – we analysed the lipid, protein, and metabolite content of vesicles produced by the marine cyanobacterium Prochlorococcus. We show that Prochlorococcus exports a diverse array of cellular compounds into the surrounding seawater enclosed within discrete vesicles. Vesicles produced by two different strains contain some materials in common, but also display numerous strain-specific differences, reflecting functional complexity within vesicle populations. The vesicles contain active enzymes, indicating that they can mediate extracellular biogeochemical reactions in the ocean. We further demonstrate that vesicles from Prochlorococcus and other bacteria associate with diverse microbes including the most abundant marine bacterium, Pelagibacter. Together, our data point toward hypotheses concerning the functional roles of vesicles in marine ecosystems including, but not limited to, possibly mediating energy and nutrient transfers, catalysing extracellular biochemical reactions, and mitigating toxicity of reactive oxygen species.  相似文献   
1000.
Coastal waters are a major source of marine methane to the atmosphere. Particularly high concentrations of this potent greenhouse gas are found in anoxic waters, but it remains unclear if and to what extent anaerobic methanotrophs mitigate the methane flux. Here we investigate the long-term dynamics in methanotrophic activity and the methanotroph community in the coastal oxygen minimum zone (OMZ) of Golfo Dulce, Costa Rica, combining biogeochemical analyses, experimental incubations and 16S rRNA gene sequencing over 3 consecutive years. Our results demonstrate a stable redox zonation across the years with high concentrations of methane (up to 1.7 μmol L−1) in anoxic bottom waters. However, we also measured high activities of anaerobic methane oxidation in the OMZ core (rate constant, k, averaging 30 yr−1 in 2018 and 8 yr−1 in 2019–2020). The OPU3 and Deep Sea-1 clades of the Methylococcales were implicated as conveyors of the activity, peaking in relative abundance 5–25 m below the oxic–anoxic interface and in the deep anoxic water respectively. Although their genetic capacity for anaerobic methane oxidation remains unexplored, their sustained high relative abundance indicates an adaptation of these clades to the anoxic, methane-rich OMZ environment, allowing them to play major roles in mitigating methane fluxes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号