首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17169篇
  免费   1418篇
  国内免费   8篇
  18595篇
  2024年   21篇
  2023年   130篇
  2022年   305篇
  2021年   533篇
  2020年   309篇
  2019年   399篇
  2018年   457篇
  2017年   352篇
  2016年   662篇
  2015年   1074篇
  2014年   1159篇
  2013年   1344篇
  2012年   1627篇
  2011年   1456篇
  2010年   929篇
  2009年   773篇
  2008年   1019篇
  2007年   996篇
  2006年   887篇
  2005年   807篇
  2004年   772篇
  2003年   617篇
  2002年   617篇
  2001年   105篇
  2000年   90篇
  1999年   110篇
  1998年   125篇
  1997年   96篇
  1996年   90篇
  1995年   65篇
  1994年   60篇
  1993年   49篇
  1992年   48篇
  1991年   38篇
  1990年   37篇
  1989年   48篇
  1988年   38篇
  1987年   24篇
  1986年   20篇
  1985年   28篇
  1984年   32篇
  1983年   22篇
  1982年   19篇
  1981年   18篇
  1980年   21篇
  1979年   19篇
  1978年   13篇
  1976年   17篇
  1974年   13篇
  1968年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Thermodynamic parameters are reported for duplex formation of 40 self-complementary RNA duplexes containing wobble terminal base pairs with all possible 3′ single and double-nucleotide overhangs, mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest neighbor analysis, the addition of a single 3′ dangling nucleotide increases the stability of duplex formation up to 1 kcal/mol in a sequence-dependent manner. The addition of a second dangling nucleotide increases the stability of duplexes closed with wobble base pairs in an idiosyncratic manner. The results allow for the development of a nearest neighbor model, which improves the predication of free energy and melting temperature for duplexes closed by wobble base pairs with 3′ single or double-nucleotide overhangs. Phylogenetic analysis of naturally occurring miRNAs was performed. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent on the orientation of the GU closing base pair rather than the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for the 5′ single terminal overhangs adjacent to wobble closing base pairs are also presented.  相似文献   
932.
Methane metabolism was investigated with respect to depth in intertidal microbial mats of the Great Sippewissett Salt Marsh, Massachusetts. Although sulfate-reducing organisms dominate anaerobic carbon consumption in marine microbial mats, methanogens persist and their activity varies vertically and temporally in the mat system. In the Sippewissett mats, potential methane production for all mat layers was higher in the spring (17.2 ± 4.5 nmol CH4 cm−2 day−1) than in the fall (3.0 ± 1.1 nmol CH4 cm−2 day−1) and maximal rates were consistently observed in proximity to the chemocline (5–10 mm depth). The methane flux from the mat surface did not vary appreciably over time due to the ability of methanotrophic activity to limit net methane production. Evidence indicates that both aerobic and anaerobic oxidation of methane occurs in this system. The importance of H2 as a substrate for methanogenesis appeared to be the greatest at the mat surface (0–10 mm), and the proportion of methylotrophic methanogens generally increased with depth. These results suggest that both non-equilibrium H2 dynamics and the use of non-competitive substrates permit coexistence of methanogens and sulfate-reducing organisms in the mat system.  相似文献   
933.
934.
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.  相似文献   
935.
Recent studies have suggested a genetic component to heart rate (HR) and HR variability (HRV). However, a systematic examination of the genetic contribution to the variation in HR and HRV has not been performed. This study investigated the genetic contribution to HR and HRV using a wide range of inbred and recombinant inbred (RI) mouse strains. Electrocardiogram data were recorded from 30 strains of inbred mice and 29 RI strains. Significant differences in mean HR and total power (TP) HRV were identified between inbred strains and RI strains. Multiple significant differences within the strain sets in mean low-frequency (LF) and high-frequency (HF) power were also found. No statistically significant concordance was found between strain distribution patterns for HR and HRV phenotypes. Genomewide interval mapping identified a significant quantitative trait locus (QTL) for HR [LOD (likelihood of the odds) score = 3.763] on chromosome 6 [peak at 53.69 megabases (Mb); designated HR 1 (Hr1)]. Suggestive QTLs for TP were found on chromosomes 2, 4, 5, 6, and 14. A suggestive QTL for LF was found on chromosome 16; for HF, we found one significant QTL on chromosome 5 (LOD score = 3.107) [peak at 53.56 Mb; designated HRV-high-frequency 1 (Hrvhf1)] and three suggestive QTLs on chromosomes 2, 11 and 15. In conclusion, the results demonstrate a strong genetic component in the regulation of resting HR and HRV evidenced by the significant differences between strains. A lack of correlation between HR and HRV phenotypes in some inbred strains suggests that different sets of genes control the phenotypes. Furthermore, QTLs were found that will provide important insight to the genetic regulation of HR and HRV at rest.  相似文献   
936.
Diagnostics and therapeutic treatments based on monoclonal antibodies have been attaining an increasing importance in the past decades, but their large scale employment requires the optimization of purification processes. To obtain this goal, research is focusing on affinity chromatography techniques and the development of new synthetic ligands. In this work we present a computational investigation aimed at obtaining some guidelines for the rational design of affinity ligands, through the study of their interactions with both monoclonal antibodies (modeled as the FC domain of human IgG) and a model support material (agarose). The study was carried out performing molecular dynamics simulations of the support-spacer-ligand-IgG complex in explicit water. Binding energies between IgG and two supported ligands, a disubstituted derivative of trichlorotriazine and a tetrameric peptide, were determined with the linear interaction energy and MM-GBSA approaches. A detailed study of the possible binding sites of the considered ligands was performed exploiting docking protocols and MD simulations. It was found that both ligands bind IgG in the same site as protein A, which is the hinge region between the CH2 and CH3 domains of IgG. However this site is not easily accessible and requires a high mobility of the ligands. The energetic analysis revealed that van der Waals and electrostatic energies of interaction of the triazine ligand with the support are significant and comparable to those with the protein, so that they limit its capability to reach the protein binding site. A similar result was found also for the tetrameric peptide, which is however able to circumvent the problem; for steric reasons only two of its arms can interact at the same time with the agarose support, thus leaving the remaining two available to bind the protein. These results indicate that the interaction between ligand and support material is an important parameter, which should be considered in the computational and experimental design of ligands for affinity chromatography.  相似文献   
937.
The Saccharomyces cerevisiae type 2C protein phosphatase Ptc1 is required for a wide variety of cellular functions, although only a few cellular targets have been identified. A genetic screen in search of mutations in protein kinase–encoding genes able to suppress multiple phenotypic traits caused by the ptc1 deletion yielded a single gene, MKK1, coding for a MAPK kinase (MAPKK) known to activate the cell-wall integrity (CWI) Slt2 MAPK. In contrast, mutation of the MKK1 paralog, MKK2, had a less significant effect. Deletion of MKK1 abolished the increased phosphorylation of Slt2 induced by the absence of Ptc1 both under basal and CWI pathway stimulatory conditions. We demonstrate that Ptc1 acts at the level of the MAPKKs of the CWI pathway, but only the Mkk1 kinase activity is essential for ptc1 mutants to display high Slt2 activation. We also show that Ptc1 is able to dephosphorylate Mkk1 in vitro. Our results reveal the preeminent role of Mkk1 in signaling through the CWI pathway and strongly suggest that hyperactivation of Slt2 caused by upregulation of Mkk1 is at the basis of most of the phenotypic defects associated with lack of Ptc1 function.  相似文献   
938.
Uncovering the underlying genetic component of any disease is key to the understanding of its pathophysiology and may open new avenues for development of therapeutic strategies and biomarkers. In the past several years, there has been an explosion of genome-wide association studies (GWAS) resulting in the discovery of novel candidate genes conferring risk for complex diseases, including neurodegenerative diseases. Despite this success, there still remains a substantial genetic component for many complex traits and conditions that is unexplained by the GWAS findings. Additionally, in many cases, the mechanism of action of the newly discovered disease risk variants is not inherently obvious. Furthermore, a genetic region with multiple genes may be identified via GWAS, making it difficult to discern the true disease risk gene. Several alternative approaches are proposed to overcome these potential shortcomings of GWAS, including the use of quantitative, biologically relevant phenotypes. Gene expression levels represent an important class of endophenotypes. Genetic linkage and association studies that utilize gene expression levels as endophenotypes determined that the expression levels of many genes are under genetic influence. This led to the postulate that there may exist many genetic variants that confer disease risk via modifying gene expression levels. Results from the handful of genetic studies which assess gene expression level endophenotypes in conjunction with disease risk suggest that this combined phenotype approach may both increase the power for gene discovery and lead to an enhanced understanding of their mode of action. This review summarizes the evidence in support of gene expression levels as promising endophenotypes in the discovery and characterization of novel candidate genes for complex diseases, which may also represent a novel approach in the genetic studies of Alzheimer's and other neurodegenerative diseases.  相似文献   
939.
Redox conditions change in events such as immune and platelet activation, and during viral infection, but the biochemical consequences are not well characterized. There is evidence that some disulfide bonds in membrane proteins are labile while others that are probably structurally important are not exposed at the protein surface. We have developed a proteomic/mass spectrometry method to screen for and identify non-structural, redox-labile disulfide bonds in leucocyte cell-surface proteins. These labile disulfide bonds are common, with several classes of proteins being identified and around 30 membrane proteins regularly identified under different reducing conditions including using enzymes such as thioredoxin. The proteins identified include integrins, receptors, transporters and cell-cell recognition proteins. In many cases, at least one cysteine residue was identified by mass spectrometry as being modified by the reduction process. In some cases, functional changes are predicted (e.g. in integrins and cytokine receptors) but the scale of molecular changes in membrane proteins observed suggests that widespread effects are likely on many different types of proteins including enzymes, adhesion proteins and transporters. The results imply that membrane protein activity is being modulated by a 'redox regulator' mechanism.  相似文献   
940.
Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号