首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   28篇
  2023年   2篇
  2021年   6篇
  2020年   4篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   11篇
  2013年   21篇
  2012年   12篇
  2011年   23篇
  2010年   9篇
  2009年   10篇
  2008年   21篇
  2007年   6篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   15篇
  2001年   11篇
  2000年   7篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   8篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   2篇
  1981年   2篇
  1980年   5篇
  1978年   2篇
  1977年   2篇
  1976年   6篇
  1975年   3篇
  1972年   2篇
  1970年   2篇
  1969年   4篇
  1967年   1篇
  1957年   1篇
  1929年   2篇
排序方式: 共有312条查询结果,搜索用时 31 毫秒
261.
Apoptotic cell death is of central importance in the pathogenesis of viral infections. Activation of a cascade of cysteine proteases, i.e. caspases, plays a key role in the effector phase of virus-induced apoptosis. However, little is known about pathways leading to the activation of initiator caspases in virus-infected host cells. Recently, we have shown that Sendai virus (SeV) infection triggers apoptotic cell death by activation of the effector caspase-3 and initiator caspase-8. We now investigated mechanisms leading to the activation of another initiator caspase, caspase-9. Unexpectedly we found that caspase-9 cleavage is not dependent on the presence of active caspases-3 or -8. Furthermore, the presence of caspase-9 in mouse embryonic fibroblast (MEF) cells was a prerequisite for Sendai virus-induced apoptotic cell death. Caspase-9 activation occurred without the release of cytochrome c from mitochondria and was not dependent on the presence of Apaf-1 or reactive oxygen intermediates. Our results therefore suggest an alternative mechanism for caspase-9 activation in virally infected cells beside the well characterized pathways via death receptors or mitochondrial cytochrome c release.  相似文献   
262.
Recombinant inbred lines (RILs) derived from B73 x M017 were screened for cold germination (CG) and desiccation tolerance (DT) phenotypes. Reciprocal F(1) hybrids were made between divergent RILs, and hybrids that showed differential phenotypes (parent-of-origin effect) for CG or DT were selected for profiling mRNA and protein expression. mRNA and proteins were extracted from embryo axes of seed germinated for 11 d at 12.5 degrees C in the dark and developing embryos at 40% seed moisture (R5 stage) for CG and DT, respectively. GeneCalling analysis, an open-ended mRNA profiling method, identified 336 of 32,496 and 656 of 32,940 cDNA fragments that showed >or=1.5-fold change in expression between the reciprocal F(1) hybrids for CG and DT, respectively. Protein expression map (PEM) analysis, an open-ended two-dimensional polyacrylamide gel electrophoresis, identified 117 of 2,641 and 205 of 1,876 detected proteins to be differentially expressed with >or=1.5-fold change between the reciprocal F(1) hybrids in CG and DT samples, respectively. A subset of these proteins was identified by tandem mass spectrometry followed by database query of the spectra. The differentially expressed genes/proteins were classified into various functional groups including carbohydrate and amino acid metabolism, ion transporters, stress and defense response, polyamine metabolism, chaperonins, cytoskeleton associated, etc. Phenotypic analysis of seed from self-pollinated ears of the reciprocal F(1) hybrids displayed small differences compared with the reciprocal hybrids themselves, suggesting a negligible effect of cytoplasmic factors on CG and DT traits. The results provide leads to improving our understanding of the genes involved in stress response during seed maturation and germination.  相似文献   
263.
Lauer SA  Nolan JP 《Cytometry》2002,48(3):136-145
BACKGROUND: For ease of purification, proteins are often expressed with a short affinity sequence of five or six adjacent histidine residues (His-tag). This His-tag binds to the metal of metal chelator complexes such as Ni(2+)-nitrilotriacetic acid (Ni-NTA) or -iminodiacetic acid (Ni-IDA). Chromatography resins bearing covalently attached metal chelator complexes are used widely for the easy affinity purification of His-tagged proteins or peptides. Because Ni-NTA microspheres were not commercially available at the beginning of our studies, we prepared and characterized such microspheres to immobilize His-tagged proteins and study their interactions. Our microspheres are of three types: (a) metal chelator complexes bound covalently to polystyrene microspheres, (b) metal chelator complexes bound covalently to silica microspheres, and (c) lipid-linked metal chelator complexes adsorbed to silica microspheres forming self-assembled bilayer membranes where the metal chelators have lateral mobility. METHODS: The microspheres bearing covalently attached Ni-chelator were synthesized by reacting a primary amine-bearing Ni-NTA ligand with carboxy-functionalized microspheres and then loading with Ni(2+). Microspheres with laterally mobile metal chelator were made by incubating glass microspheres with liposomes containing phosphatidylcholine (PC) and the metal chelating lipid 1,2-dioleoyl-sn-glycero-3-[(N (5-amino-1-carboxypentyl)iminodiacetic acid)succinyl]. Binding of a His-tagged enhanced green fluorescent protein (EGFP) was used to characterize these microspheres by flow cytometry for their specificity, sensitivity, capacity and stability. RESULTS: While all micospheres specifically bind His-tagged proteins, the conditions to achieve this are different for the polystyrene- and silica-based spheres. All three types of microspheres bind His-EGFP with saturation occurring at 30-50 nM and an apparent avidity (concentration of half-maximal binding) of approximately 1 to 2 x 10(-8) M at pH 7.4. Binding of His-EGFP is inhibited by imidazole or ethylene-diaminetetraacetic acid (EDTA). Polystyrene Ni-NTA microspheres showed significant nonspecific binding as measured by binding in the presence of imidazole or EDTA or by binding of fluorescent proteins lacking a His-tag. This nonspecific binding of proteins to and aggregation of polystyrene spheres could only be prevented by the inclusion of low concentrations of Tween 20, but not by including bovine serum albumin (BSA), polyethylene glycols, or polyvinylpyrrolidones as blocking agents. In contrast, silica-based microspheres with covalently attached Ni-NTA or silica microspheres bearing adsorbed bilayers that contain Ni-NTA-lipid showed little nonspecific binding in the presence of BSA. Our results on the stability of immobilization indicate that washing destabilizes the binding of His-tagged proteins to Ni-NTA microspheres. This binding consists of two interactions of different affinities. We also demonstrate that limited multiplexed analysis with differently sized silica microspheres bearing the Ni-NTA-lipid is feasible. CONCLUSIONS: The microspheres described are well suited to selectively immobilize His-tagged proteins to analyze their interactions by flow cytometry. The affinity and kinetic stability of the interaction of His-tagged proteins with Ni-NTA are insufficient to use Ni-NTA microspheres in multiplexed analysis formats where different His-tagged proteins are bound to distinct microspheres. Improvements towards this end (improved chelators and/or improved affinity tags) are critical for extending the use of this method. We are currently working on novel chelators to strengthen the stability of immobilization of His-tagged proteins to surfaces. Such improvements would greatly enhance the analysis of interactions of immobilized His-tagged proteins and could make the development of microsphere-based arrays with His-tagged protein/antibody possible.  相似文献   
264.
In semiarid environments, surface soil properties play a major role in ecosystem dynamics, through their influence on processes such as runoff, infiltration, seed germination, and seedling establishment. Surface soil properties usually show a high degree of spatial heterogeneity in semiarid areas, but direct tests to evaluate the consequences of this heterogeneity on seedling establishment are limited. Using a combination of spatial analysis by distance indices (SADIE) and principal components analysis (PCA) we quantified the spatiotemporal patterns of seedling survival of a Mediterranean native shrub (Pistacia lentiscus) during the first 3 years after planting on a semiarid degraded site in southeastern Spain. We used a variation partitioning method to identify environmental variables associated with seedling survival patterns. Three years after planting, only 36% of the seedlings survived. During the first summer, one-third of the seedlings died, with secondary major mortality in the 3rd summer after planting. The spatial pattern of survival became strongly clumped by the end of the first summer, with clearly defined patches (areas of high survival) and gaps (areas of low survival). The intensity of this pattern increased after subsequent high-mortality periods. Of the 14 variables, the ones most strongly coupled to seedling survival were bare soil cover, sand content, and soil compaction. These findings contribute to our understanding of the linkages between the spatial heterogeneity of abiotic factors and the response of plant populations in semiarid degraded ecosystems and can be used to optimize restoration practices in these areas.  相似文献   
265.
Lauer G  Sollberg S  Cole M  Krieg T  Eming SA 《FEBS letters》2002,531(2):309-313
Vascular endothelial growth factor (VEGF) is a potent angiogenic mediator in tissue repair. In non-healing human wounds plasmin cleaves and inactivates VEGF165. In the present study, we generated recombinant VEGF165 mutants resistant to plasmin proteolysis. Substitution of Arg110 with Ala110 or Gln110, and Ala111 with Pro111 yielded plasmin-resistant and biologically active VEGF165 mutants. In addition, substitution of Ala111 with Pro111 resulted in a substantial degree of stabilization when incubated in wound fluid obtained from non-healing wounds. These results suggest that the plasmin cleavage site Arg110/Ala111 and the carboxyl-terminal domain play an important role in the mitogenic activity of VEGF165.  相似文献   
266.
Flow cytometry offers numerous advantages over traditional techniques for measuring intracellular Ca(2+) in lymphoid and nonlymphoid cells. In particular, the heterogeneity of cell responses can be defined by flow cytometry, and multiparameter analyses permit the determination of intracellular Ca(2+) in surface-marker-defined target cells as well as correlation of changes in Ca(2+) with other biochemical markers, including ligand binding. This article presents several established methods for measuring intracellular Ca(2+) by flow cytometry in lymphoid and nonlymphoid cells. Examples are provided for determination of Ca(2+) in human peripheral blood leukocytes and two human epithelial cell lines grown in monolayer. In addition, applications are reviewed or presented for correlating changes in intracellular Ca(2+) with other cell parameters, including cell cycle analysis, changes in cell membrane integrity, and the induction of apoptosis markers. Finally, a number of novel sample handling capabilities useful for performing kinetic analyses of Ca(2+) changes by flow cytometry are now available and one application is presented which is finding utility in pharmacologic studies.  相似文献   
267.

Background

Tumor necrosis factor alpha (TNF) is able to kill cancer cells via receptor-mediated cell death requiring adenosine triphosphate (ATP). Clinical usage of TNF so far is largely limited by its profound hepatotoxicity. Recently, it was found in the murine system that specific protection of hepatocytes against TNF''s detrimental effects can be achieved by fructose-mediated ATP depletion therein. Before employing this quite attractive selection principle in a first clinical trial, we here comprehensively investigated the interdependence between ATP depletion and TNF hepatotoxicity in both in vitro and ex vivo experiments based on usage of primary patient tissue materials.

Methods

Primary human hepatocytes, and both non-tumorous and tumorous patient-derived primary liver tissue slices were used to elucidate fructose-induced ATP depletion and TNF-induced cytotoxicity.

Results

PHH as well as tissue slices prepared from non-malignant human liver specimen undergoing a fructose-mediated ATP depletion were both demonstrated to be protected against TNF-induced cell death. In contrast, due to tumor-specific overexpression of hexokinase II, which imposes a profound bypass on hepatocytic-specific fructose catabolism, this was not the case for human tumorous liver tissues.

Conclusion

Normal human liver tissues can be protected transiently against TNF-induced cell death by systemic pretreatment with fructose used in non-toxic/physiologic concentrations. Selective TNF-targeting of primary and secondary tumors of the liver by transient and specific depletion of hepatocytic ATP opens up a new clinical avenue for the TNF-based treatment of liver cancers.  相似文献   
268.
We report here on the proceedings of the Global Alzheimer Summit that took place September 22–23, 2011 in Madrid, Spain. As Alzheimer disease (AD) is the leading cause of neurodegeneration in elderly individuals and, as yet, has no effective therapeutic option, it continues to stimulate global research interests. At the conference, leaders in the field of AD research provided insights into current developments in various areas of research, namely molecular mechanisms, genetics, novel aspects of AD research and translational research. Emphasis was also placed on the importance of biomarkers in the diagnosis of AD and development of current therapeutic strategies.  相似文献   
269.
270.
Troglitazone was withdrawn from the market shortly after approval for diabetes type II therapy because of strong hepatotoxic effects in man that could not be predicted from regulatory animal or in vitro studies. Another pharmaceutical that is regularly associated with adverse effects on the liver, sometimes leading to acute liver failure, is the widely used non-steroidal anti-inflammatory drug (NSAID) diclofenac. Since the underlying molecular mechanisms are not yet fully known, we treated primary rat and human hepatocyte monolayer cultures for 24 h with different doses of troglitazone and diclofenac to analyze species differences related to toxicity in vitro. Metformin an antidiabetic drug which does not cause severe adverse reactions served as negative control. Human hepatocytes showed a higher sensitivity to troglitazone than rat hepatocytes, while diclofenac-induced cytotoxicity at fairly similar concentrations. By co-treatment with specific inhibitors for cytochrome P450 (CYP) 2C and CYP3A - the major phase I enzymes involved in liver xenobiotic metabolism - we could confirm the prominent role of CYP3A in the bioactivation of troglitazone as well as the role of CYP3A and CYP2C in the activation of diclofenac. Inhibition of these enzymes increased the viability of treated cells in both species. Furthermore, we were able to demonstrate marked species differences in gene expression patterns of troglitazone treated rat and human hepatocytes. In contrast to rat hepatocytes, human cells showed distinct upregulation of various CYPs, regulators of xenobiotic metabolism and marker genes for oxidative stress. In contrast, gene expression alterations in rat and human hepatocytes treated with Diclofenac were rather similar. Altogether our study showed that species-specific effects as well as indications for the mode of action of compounds can be addressed by the use of primary hepatocyte cultures from various species in combination with gene expression profiling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号