首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   14篇
  2018年   3篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   14篇
  2012年   8篇
  2011年   11篇
  2010年   11篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   8篇
  2005年   6篇
  2004年   6篇
  2002年   3篇
  2001年   7篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1985年   4篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1971年   2篇
  1966年   3篇
  1960年   2篇
  1957年   2篇
  1912年   2篇
  1910年   3篇
  1907年   2篇
  1904年   3篇
  1903年   2篇
  1902年   2篇
  1897年   2篇
  1892年   2篇
  1890年   2篇
  1889年   6篇
  1875年   3篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
71.
Many fish species transform in body shape during growth, but it remains unclear how this influences the mechanics of locomotion. Therefore, the present study focused on understanding how drag generation during coasting is affected by ontogenetic changes in the morphology of zebrafish (Danio rerio). The shapes of the body and fins were measured from photographs of fish ranging in size from small larvae to mature adults and these morphometrics were compared to drag coefficients calculated from high-speed video recordings of routine swimming. We found that the viscous drag coefficient of larval and juvenile fish increased by more than an order of magnitude during growth and the inertial drag coefficient decreased at a comparable rate in adults. These hydrodynamic changes occurred as zebrafish disproportionately increased the span of their fins and their body changed shape from elongated to streamlined, as reflected by the logistic growth of a newly defined streamlining index, SL. These results suggest that morphological changes incur a performance cost by generating greater drag when larvae and juveniles operate in the viscous regime, but later provide a performance benefit by reducing pressure drag in the inertial regime of the adult stage.  相似文献   
72.
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle‐like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake byP. falciparum‐infected erythrocytes shows that at R and S stages, a time‐increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time‐increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.  相似文献   
73.

Background

Changing lifestyles have recently caused a severe reduction of the gathering of wild food plants. Knowledge about wild food plants and the local environment becomes lost when plants are no longer gathered. In Central Europe popular scientific publications have tried to counter this trend. However, detailed and systematic scientific investigations in distinct regions are needed to understand and preserve wild food uses. This study aims to contribute to these investigations.

Methods

Research was conducted in the hill country east of Graz, Styria, in Austria. Fifteen farmers, most using organic methods, were interviewed in two distinct field research periods between July and November 2008. Data gathering was realized through freelisting and subsequent semi-structured interviews. The culinary use value (CUV) was developed to quantify the culinary importance of plant species. Hierarchical cluster analysis was performed on gathering and use variables to identify culture-specific logical entities of plants. The study presented was conducted within the framework of the master's thesis about wild plant gathering of the first author. Solely data on gathered wild food species is presented here.

Results

Thirty-nine wild food plant and mushroom species were identified as being gathered, whereas 11 species were mentioned by at least 40 percent of the respondents. Fruits and mushrooms are listed frequently, while wild leafy vegetables are gathered rarely. Wild foods are mainly eaten boiled, fried or raw. Three main clusters of wild gathered food species were identified: leaves (used in salads and soups), mushrooms (used in diverse ways) and fruits (eaten raw, with milk (products) or as a jam).

Conclusions

Knowledge about gathering and use of some wild food species is common among farmers in the hill country east of Graz. However, most uses are known by few farmers only. The CUV facilitates the evaluation of the culinary importance of species and makes comparisons between regions and over time possible. The classification following gathering and use variables can be used to better understand how people classify the elements of their environment. The findings of this study add to discussions about food heritage, popularized by organizations like Slow Food, and bear significant potential for organic farmers.  相似文献   
74.
Here we review the literature of a male poecillid's sexually dimorphic body plan, behavior, and nervous system, including work dating from the mid 1800s to the mid 1990s as well as work in press or in preparation for publication. Rosa-Molinar described the remodeling of the sexually dimorphic anal fin appendicular support, confirmed earlier claims about the development of the male and female secondary sex characteristics in the Western Mosquitofish, Gambusia affinis and provided for the first time direct embryonic evidence suggesting that remodeling of the sexually dimorphic anal fin appendicular support is biphasic. The first process begins in embryos and proceeds similarly in immature males and females; the second process occurs only in males and results in the anterior transposition of the anal fin and its appendicular support to the level of vertebra 11 [Rosa-Molinar E, Hendricks SE, Rodriguez-Sierra JF, Fritzsch B. 1994. Development of the anal fin appendicular support in the western mosquitofish, Gambusia affinis (Baird and Girard, 1854): a reinvestigation and reinterpretation. Acta Anat 151:20-35.] and the formation of a gonopodium used for internal fertilization. Studies using high-speed video cameras confirmed and extended Peden's and others' observations of copulatory behavior. The cameras showed that circumduction is a complex movement combining in a very fast sequence abduction, extension and pronation, S-start-type fast-start (defined as torque-thrust), and adduction movements. Recent work on the nervous system demonstrated dye-coupling between motor neurons and interneurons via gap junctions, suggesting an attractive substrate for the rapid motions involved in poecillid copulatory reflexes.  相似文献   
75.
The median fins of fishes consist of the dorsal, anal, and caudal fins and have long been thought to play an important role in generating locomotor force during both steady swimming and maneuvering. But the orientations and magnitudes of these forces, the mechanisms by which they are generated, and how fish modulate median fin forces have remained largely unknown until the recent advent of Digital Particle Image Velocimetry (DPIV) which allows empirical analysis of force magnitude and direction. Experimental hydrodynamic studies of median fin function in fishes are of special utility when conducted in a comparative phylogenetic context, and we have examined fin function in four ray-finned fish clades (sturgeon, trout, sunfish, and mackerel) with the goal of testing classical hypotheses of fin function and evolution. In this paper we summarize two recent technical developments in DPIV methodology, and discuss key recent findings relevant to median fin function. High-resolution DPIV using a recursive local-correlation algorithm allows quantification of small vortices, while stereo-DPIV permits simultaneous measurement of x, y, and z flow velocity components within a single planar light sheet. Analyses of median fin wakes reveal that lateral forces are high relative to thrust force, and that mechanical performance of median fins (i.e., thrust as a proportion of total force) averages 0.35, a surprisingly low value. Large lateral forces which could arise as an unavoidable consequence of thrust generation using an undulatory propulsor may also enhance stability and maneuverability. Analysis of hydrodynamic function of the soft dorsal fin in bluegill sunfish shows that a thrust wake is generated that accounts for 12% of total thrust and that the thrust generation by the caudal fin may be enhanced by interception of the dorsal fin wake. Integration of experimental studies of fin wakes, computational approaches, and mechanical models of fin function promise understanding of instantaneous forces on fish fins during the propulsive cycle as well as exploration of a broader locomotor design space and its hydrodynamic consequences.  相似文献   
76.
Despite enormous progress during the last twenty years in understandingthe mechanistic basis of aquatic animal propulsion—a taskinvolving the construction of a substantial data base on patternsof fin and body kinematics and locomotor muscle function—thereremains a key area in which biologists have little information:the relationship between propulsor activity and water movementin the wake. How is internal muscular force translated intoexternal force exerted on the water? What is the pattern offluid force production by different fish fins (e.g., pectoral,caudal, dorsal) and how does swimming force vary with speedand among species? These types of questions have received considerableattention in analyses of terrestrial locomotion where forceoutput by limbs can be measured directly with force plates.But how can forces exerted by animals moving through fluid bemeasured? The advent of digital particle image velocimetry (DPIV)has provided an experimental hydrodynamic approach for quantifyingthe locomotor forces of freely moving animals in fluids, andhas resulted in significant new insights into the mechanismsof fish propulsion. In this paper we present ten "lessons learned"from the application of DPIV to problems of fish locomotionover the last five years. (1) Three-dimensional DPIV analysisis critical for reconstructing wake geometry. (2) DPIV analysisreveals the orientation of locomotor reaction forces. (3) DPIVanalysis allows calculation of the magnitude of locomotor forces.(4) Swimming speed can have a major impact on wake structure.(5) DPIV can reveal interspecific differences in vortex wakemorphology. (6) DPIV analysis can provide new insights intothe limits to locomotor performance. (7) DPIV demonstrates thefunctional versatility of fish fins. (8) DPIV reveals hydrodynamicforce partitioning among fins. (9) DPIV shows that wake interactionamong fins may enhance thrust production. (10) Experimentalhydrodynamic analysis can provide insight into the functionalsignificance of evolutionary variation in fin design.  相似文献   
77.
Using the strictly neutral model as a null hypothesis, we tested for deviations from expected levels of nucleotide polymorphism at the alcohol dehydrogenase locus (Adh-1) within and among four species of pocket gophers (Geomys bursarius major, G. knoxjonesi, G. texensis llanensis, and G. attwateri). The complete protein-encoding region was examined, and 10 unique alleles, representing both electromorphic and cryptic alleles, were used to test hypotheses (e.g., the neutral model) concerning the maintenance of genetic variation. Nineteen variable sites were identified among the 10 alleles examined, including 9 segregating sites occurring in synonymous positions and 10 that were nonsynonymous. Several statistical methods, including those that test for within-species variation as well as those that examine variation within and among species, failed to reject the null hypothesis that variation (both within and between species of Geomys) at the Adh locus is consistent with the neutral theory. However, there was significant heterogeneity in the ratio of polymorphism to divergence across the gene, with polymorphisms clustered in the first half of the coding region and fixed differences clustered in the second half of the gene. Two alternative hypotheses are discussed as possible explanations for this heterogeneity: an old balanced polymorphism in the first half of the gene or a recent selective sweep in the second half of the gene.   相似文献   
78.
Biochemistry of homologous recombination in Escherichia coli.   总被引:51,自引:0,他引:51       下载免费PDF全文
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.  相似文献   
79.
Philosophers of evolutionary biology favor the so-called etiological concept of function according to which the function of a trait is its evolutionary purpose, defined as the effect for which that trait was favored by natural selection. We term this the selected effect (SE) analysis of function. An alternative account of function was introduced by Robert Cummins in a non-evolutionary and non-purposive context. Cummins's account has received attention but little support from philosophers of biology. This paper will show that a similar non-purposive concept of function, which we term causal role (CR) function, is crucial to certain research programs in evolutionary biology, and that philosophical criticisms of Cummins's concept are ineffective in this scientific context. Specifically, we demonstrate that CR functions are a vital and ineliminable part of research in comparative and functional anatomy, and that biological categories used by anatomists are not defined by the application of SE functional analysis. Causal role functions are non-historically defined, but may themselves be used in an historical analysis. Furthermore, we show that a philosophical insistence on the primary of SE functions places practicing biologists in an untenable position, as such functions can rarely be demonstrated (in contrast to CR functions). Biologists who study the form and function of organismal design recognize that it is virtually impossible to identify the past action of selection on any particular structure retrospectively, a requirement for recognizing SE functions.  相似文献   
80.
Experiments were performed to localize the hepatic microsomal enzymes of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol biosynthesis to the cytoplasmic or lumenal surface of microsomal vesicles. Greater than 90 percent of the activities of fatty acid-CoA ligase (EC 6.2.1.3), sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15), lysophosphatidic acid acyltransferase, diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2), and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) was inactivated by proteolysis of intact microsomal vesicles. The phosphatidic acid phosphatase (EC 3.1.3.4) was not inactivated by any of the protease tested. Under conditions employed, <5 percent of the luminal mannose-6-phosphatase (EC 3.1.3.9) activity was lost. After microsomal integrity was disrupted with detergents, protease treatment resulted in a loss of >74 percent of the mannose-6-phosphatase activity. The latency of the mannose-6-phosphatase activity was not affected by protease treatment. Mannose-6-phosphatase latency was not decreased by the presence of the assay components of several of the lipid biosynthetic activities, indicating that those components did not disrupt the microsomal vesicles. None of the lipid biosynthetic activities appeared latent. The presence of a protease-sensitive component of these biosynthetic activities on the cytoplasmic surface of microsomal vesicles, and the absence of latency for any of these biosynthetic activities suggest that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. The location of biosynthetic activities within the transverse plane of the endoplasmic reticulum is of particular interest for enzymes whose products may be either secreted or retained within the cell. Phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol account for the vast majority of hepatic glycerolipid biosynthesis. The phospholipids are utilized for hepatic membrane biogenesis and for the formation of lipoproteins, and the triacylglycerols are incorporated into lipoproteins or accumulate within the hepatocyte in certain disease states (14). The enzymes responsible for the biosynthesis of these glycerolipids (Scheme I) from fatty acids and glycerol-3P have all been localized to the microsomal subcellular fraction (12, 16, 29, 30). Microsomes are derived from the endoplasmic reticulum and are sealed vesicles which maintain proper sidedness. (11, 22). The external surface of these vesicles corresponds to the cytoplasmic surface of the endoplasmic reticulum. Macromolecules destined for secretion must pass into the lumen of the endoplasmic reticulum (5, 23). Uncharged molecules of up to approximately 600 daltons are able to enter the lumen of rat liver microsomes, but macromolecules and charged molecules of low molecular weight do not cross the vesicle membrane (10, 11). Because proteases neither cross the microsomal membrane nor destroy the permeability barrier of the microsomal vesicles, only the enzymes and proteins located on the cytoplasmic surface of microsomal vesicles are susceptible to proteolysis unless membrane integrity is disrupted (10, 11). By use of this approach, several enzymes and proteins have been localized in the transverse plane of microsomal membranes (11). With the possible exception of cytochrome P 450, all of the enzymes and proteins investigated were localized asymmetrically by the proteolysis technique (11). By studies of this type, as well as by product localization, glucose-6-phosphate (EC 3.1.3.9) has been localized to the luminal surface of microsomal vesicles (11) and of the endoplasmic reticulum (18, 19). All microsomal vesicles contain glucose-6-phosphatase (18, 19) which can effectively utilize mannose-6-P as a substrate, provided the permeability barrier of the vesicles has been disrupted to allow the substrate access to the active site located on the lumenal surface (4). An exact correspondence between mannose- 6-phosphate activity and membrane permeability to EDTA has been established (4). The latency of mannose-6-phosphatase activity provides a quantitative index of microsomal integrity (4.) Few of the microsomal enzymes in the synthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol have been solubilized and/or purified, and little is known about the topography of these enzymes in the transverse or lateral planes of the endoplasmic reticulum. An asymmetric location of these biosynthetic enzymes on the cytoplasmic or lumenal surface of microsomal vesicles may provide a mechanism for regulation of the glycerolipids to be retained or secreted by the cell, and for the biogenesis of asymmetric phospholipid bilayers. In this paper, we report investigations on the localization of all seven microsomal enzymes (Scheme I) in the biosynthesis of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, using the protease technique with mannose-6-phosphatase serving as luminal control activity. The latency of these lipid biosynthetic enzymes was also investigated, using the latency of mannose-6-phosphatase as an index of microsomal integrity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号