首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1650篇
  免费   124篇
  1774篇
  2023年   4篇
  2022年   17篇
  2021年   24篇
  2020年   31篇
  2019年   22篇
  2018年   28篇
  2017年   28篇
  2016年   51篇
  2015年   48篇
  2014年   62篇
  2013年   80篇
  2012年   143篇
  2011年   127篇
  2010年   70篇
  2009年   96篇
  2008年   87篇
  2007年   116篇
  2006年   105篇
  2005年   109篇
  2004年   88篇
  2003年   86篇
  2002年   68篇
  2001年   26篇
  2000年   8篇
  1999年   17篇
  1998年   23篇
  1997年   20篇
  1996年   11篇
  1995年   23篇
  1994年   17篇
  1993年   14篇
  1992年   8篇
  1991年   5篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   9篇
  1984年   8篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1979年   4篇
  1977年   11篇
  1976年   7篇
  1975年   5篇
  1973年   4篇
  1972年   4篇
  1968年   3篇
排序方式: 共有1774条查询结果,搜索用时 15 毫秒
61.
Modulation of angiogenesis-related protein synthesis by valproic acid   总被引:3,自引:0,他引:3  
Recent studies have attested to the antiangiogenic effects of HDAC inhibitors on solid human tumors. The HDAC inhibitor butyrate has been reported to impair tumor-cell-induced angiogenesis. However, due to its poor bioavailability in vivo, the therapeutic use of butyrate is limited. On the other hand, valproic acid has inhibitory effects on carcinoma cells, is known to be well tolerated, and has an excellent bioavailability. We therefore set out to investigate whether the HDAC inhibitor valproic acid also impairs angiogenesis. Our findings indicate that valproic acid represses the relevant angiogenic factors VEGF and FGF in Caco-2 cells. Both, protein expression as well as mRNA levels of VEGF, were reduced to a similar degree. Suppression of ubiquitin-proteasome activity could be a possible reason for valproic acid effects on regulatory angiogenesis proteins. These results suggest that the HDAC inhibitor valproic acid could become a valuable new addition in the attempt to develop alternative therapeutic approaches in the treatment of colon carcinomas.  相似文献   
62.
Transport and metabolization of iron bound to the fungal siderophore rhizoferrin was analyzed by transport kinetics, Mössbauer and EPR spectroscopy. Saturation kinetics (v max=24.4 pmol/(mg min), K m=64.4M) and energy dependence excluded diffusion and provided evidence for a rhizoferrin transport system in M. smegmatis. Based on the spectroscopic techniques indications for intracellular presence of the ferric rhizoferrin complex were found. This feature could be of practical importance in the search of novel drugs for the treatment of mycobacterial infections. EPR and Mössbauer spectroscopy revealed different ferritin mineral cores depending on the siderophore iron source. This finding was interpreted in terms of different protein shells, i.e. two types of ferritins.  相似文献   
63.
CYP175A1 is a thermostable P450 Monooxygenase from Thermus thermophilus HB27, demonstrating in vivo activity towards beta-carotene. Activity of CYP175A1 was reconstituted in vitro using artificial electron transport proteins. First results were obtained in the mixture with a crude Escherichia coli cell extract at 37 degrees C. In this system, beta-carotene was hydroxylated to beta-cryptoxanthin. The result indicated the presence of electron transport enzymes among the E. coli proteins, which are suitable for CYP175A1. However, upon in vitro reconstitution of CYP175A1 activity with purified recombinant flavodoxin and flavodoxin reductase from E. coli, only very low beta-cryptoxanthin production was observed. Remarkably, with another artificial electron transport system, putidaredoxin and putidaredoxin reductase from Pseudomonas putida, purified CYP175A1 enzyme hydroxylated beta-carotene at 3- and also 3'-positions, resulting in beta-cryptoxanthin and zeaxanthin. Under the optimal reaction conditions, the turnover rate of the enzyme reached 0.23 nmol beta-cryptoxanthin produced per nmol P450 per min.  相似文献   
64.
This study presents the time-resolved detection of chemically induced stress upon intracellular signaling cascades by using genetically modified sensor cells based on the human keratinocyte cell line HaCaT. The cells were stably transfected with a HSP72-GFP reporter gene construct to create an optical sensor cell line expressing a stress-inducible reporter protein. The time- and dose-dependent performance of the sensor cells is demonstrated and discussed in comparison to a label-free impedimetric monitoring approach (electric cell-substrate impedance sensing, ECIS). Moreover, a microfluidic platform was established based on μSlidesI(0,4)Luer to allow for a convenient, sterile and incubator-independent time-lapse microscopic observation of the sensor cells. Cell growth was successfully achieved in this microfluidic setup and the cellular response to a cytotoxic substance could be followed in real-time and in a non-invasive, sensitive manner. This study paves the way for the development of micro-total analysis systems that combine optical and impedimetric readouts to enable an overall quantitative characterization of changes in cell metabolism and morphology as a response to toxin exposure. By recording multiple parameters, a detailed discrimination between competing stress- or growth-related mechanisms is possible, thereby presenting an entirely new in vitro alternative to skin irritation tests.  相似文献   
65.
66.
Nicotianamine (NA) is a non‐protein amino acid involved in fundamental aspects of metal uptake, transport and homeostasis in all plants and constitutes the biosynthetic precursor of mugineic acid family phytosiderophores (MAs) in graminaceous plant species. Nicotianamine synthase (NAS) genes, which encode enzymes that synthesize NA from S‐adenosyl‐L‐methionine (SAM), are differentially regulated by iron (Fe) status in most plant species and plant genomes have been found to contain anywhere from 1 to 9 NAS genes. This study describes the identification of 21 NAS genes in the hexaploid bread wheat (Triticum aestivum L.) genome and their phylogenetic classification into two distinct clades. The TaNAS genes are highly expressed during germination, seedling growth and reproductive development. Fourteen of the clade I NAS genes were up‐regulated in root tissues under conditions of Fe deficiency. Protein sequence analyses revealed the presence of endocytosis motifs in all of the wheat NAS proteins as well as chloroplast, mitochondrial and secretory transit peptide signals in four proteins. These results greatly expand our knowledge of NAS gene families in graminaceous plant species as well as the genetics underlying Fe nutrition in bread wheat.  相似文献   
67.
Markus Nixdorf  Ute Hoecker 《Planta》2010,231(4):825-833
The COP1/SPA complex and DET1 function to suppress photomorphogenesis in dark-grown Arabidopsis seedlings. Additionally, they inhibit flowering under non-inductive short-day conditions. The COP1/SPA complex and DET1, as part of the CDD complex, represent distinct high-molecular-weight complexes in Arabidopsis. Here, we provide genetic evidence that these complexes co-act in regulating plant development. We report the isolation of a spa1 enhancer mutation that represents a novel, very weak allele of det1. This det1 esp1 mutation caused no detectable mutant phenotype in the presence of wild-type SPA1, but showed strongly synergistic genetic interaction with the spa1 mutation in the control of seedling photomorphogenesis, anthocyanin accumulation, plant size as well as flowering time. On the biochemical level, the det1 esp1 spa1 double mutant showed higher HY5 protein levels than either single mutant or the wild type. The genetic interaction of spa1 and det1 mutations was further confirmed in the spa1 det1-1 double mutant which carries a strong allele of det1. Taken together, these results show that SPA1 and DET1 act together to control photomorphogenesis throughout plant development. Hence, this suggests that COP1/SPA complexes and the CDD complex co-act in controlling the protein stability of COP1/SPA target proteins.  相似文献   
68.
Bioluminescence imaging (BLI) of luciferase reporters in small animal models offers an attractive approach to monitor regulation of gene expression, signal transduction, and protein-protein interactions, as well as following tumor progression, cell engraftment, infectious pathogens, and target-specific drug action. Conventional BLI can be repeated within the same animal after bolus reinjections of a bioluminescent substrate. However, intervals between image acquisitions are governed by substrate pharmacokinetics and excretion, therefore restricting temporal resolution of reinjection protocols to the order of hours, limiting analyses of processes in vivo with short time constants. To eliminate these constraints, we examined use of implanted micro-osmotic pumps for continuous, long-term delivery of bioluminescent substrates. Pump-assisted d-luciferin delivery enabled BLI for > or = 7 days from a variety of luciferase reporters. Pumps allowed direct repetitive imaging at < 5-minute intervals of the pharmacodynamics of proteasome- and IKK-inhibiting drugs in mice bearing tumors stably expressing ubiquitin-firefly luciferase or IkappaBalpha-firefly luciferase fusion reporters. Circadian oscillations in the olfactory bulbs of transgenic rats expressing firefly luciferase under the control of the period1 promoter also were temporally resolved over the course of several days. We conclude that implanted pumps provide reliable, prolonged substrate delivery for high temporal resolution BLI, traversing complications of repetitive substrate injections.  相似文献   
69.
Capsids and the enclosed DNA of adenoviruses, including the species C viruses adenovirus type 2 (Ad2) and Ad5, and herpesviruses, such as herpes simplex virus type 1 (HSV-1), are targeted to the nuclei of epithelial, endothelial, fibroblastic, and neuronal cells. Cytoplasmic transport of fluorophore-tagged Ad2 and immunologically detected HSV-1 capsids required intact microtubules and the microtubule-dependent minus-end-directed motor complex dynein-dynactin. A recent study with epithelial cells suggested that Ad5 was transported to the nucleus and expressed its genes independently of a microtubule network. To clarify the mechanisms by which Ad2 and, as an independent control, HSV-1 were targeted to the nucleus, we treated epithelial cells with nocodazole (NOC) to depolymerize microtubules and measured viral gene expression at different times and multiplicities of infections. Our results indicate that in NOC-treated cells, viral transgene expression was significantly reduced at up to 48 h postinfection (p.i.). A quantitative analysis of subcellular capsid localization indicated that NOC blocked the nuclear targeting of Ad2 and also HSV-1 by more than 90% at up to 7 h p.i. About 10% of the incoming Texas Red-coupled Ad2 (Ad2-TR) was enriched at the nucleus in microtubule-depleted cells at 5 h p.i. This result is consistent with earlier observations that Ad2-TR capsids move randomly in NOC-treated cells at less than 0.1 micro m/s and over distances of less than 5 micro m, characteristic of Brownian motion. We conclude that fluorophore-tagged Ad2 and HSV-1 particles are infectious and that microtubules play a prominent role in efficient nuclear targeting during entry and gene expression of species C Ads and HSV-1.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号