首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7525篇
  免费   1043篇
  8568篇
  2023年   44篇
  2022年   101篇
  2021年   179篇
  2020年   107篇
  2019年   142篇
  2018年   159篇
  2017年   121篇
  2016年   232篇
  2015年   377篇
  2014年   430篇
  2013年   464篇
  2012年   663篇
  2011年   651篇
  2010年   436篇
  2009年   358篇
  2008年   456篇
  2007年   510篇
  2006年   511篇
  2005年   526篇
  2004年   466篇
  2003年   384篇
  2002年   418篇
  2001年   52篇
  2000年   36篇
  1999年   66篇
  1998年   73篇
  1997年   50篇
  1996年   45篇
  1995年   42篇
  1994年   40篇
  1993年   40篇
  1992年   44篇
  1991年   24篇
  1990年   26篇
  1989年   25篇
  1988年   17篇
  1987年   27篇
  1986年   24篇
  1985年   18篇
  1984年   18篇
  1983年   12篇
  1982年   19篇
  1981年   17篇
  1980年   20篇
  1979年   15篇
  1978年   12篇
  1977年   9篇
  1976年   11篇
  1975年   9篇
  1974年   11篇
排序方式: 共有8568条查询结果,搜索用时 11 毫秒
81.
GABA is generally known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyperpolarizing membrane potential. However, GABAergic currents sometimes exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that GABAergic synaptic conductance and output firing rate exhibit three qualitatively different regimes as a function of GABA reversal potential, EGABA: monotonically decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of EGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development.  相似文献   
82.
Autosomal Dominant Optic Atrophy (ADOA) is the most common inherited optic atrophy where vision impairment results from specific loss of retinal ganglion cells of the optic nerve. Around 60% of ADOA cases are linked to mutations in the OPA1 gene. OPA1 is a fission-fusion protein involved in mitochondrial inner membrane remodelling. ADOA presents with marked variation in clinical phenotype and varying degrees of vision loss, even among siblings carrying identical mutations in OPA1. To determine whether the degree of vision loss is associated with the level of mitochondrial impairment, we examined mitochondrial function in lymphoblast cell lines obtained from six large Australian OPA1-linked ADOA pedigrees. Comparing patients with severe vision loss (visual acuity [VA]<6/36) and patients with relatively preserved vision (VA>6/9) a clear defect in mitochondrial ATP synthesis and reduced respiration rates were observed in patients with poor vision. In addition, oxidative phosphorylation (OXPHOS) enzymology in ADOA patients with normal vision revealed increased complex II+III activity and levels of complex IV protein. These data suggest that OPA1 deficiency impairs OXPHOS efficiency, but compensation through increases in the distal complexes of the respiratory chain may preserve mitochondrial ATP production in patients who maintain normal vision. Identification of genetic variants that enable this response may provide novel therapeutic insights into OXPHOS compensation for preventing vision loss in optic neuropathies.  相似文献   
83.
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial and rate-limiting step of glycerolipid synthesis. Two distinct GPAT isoenzymes had been identified in mammalian tissues, an N-ethylmaleimide (NEM)-sensitive isoform in the endoplasmic reticulum membrane (microsomal GPAT) and an NEM-resistant form in the outer mitochondrial membrane (mtGPAT). Although only mtGPAT has been cloned, the microsomal and mitochondrial GPAT isoforms can be distinguished, because they differ in acyl-CoA substrate preference, sensitivity to inhibition by dihydroxyacetone phosphate and polymixin B, temperature sensitivity, and ability to be activated by acetone. The preponderance of evidence supports a role for mtGPAT in synthesizing the precursors for triacylglycerol synthesis. In mtGPAT(-/-) mice, PCR genotyping and Northern analysis showed successful knockout of mtGPAT; however, we detected a novel NEM-sensitive GPAT activity in mitochondrial fractions and an anti-mtGPAT immunoreactive protein in liver mitochondria, but not in microsomes. Rigorous analysis using two-dimensional gel electrophoresis revealed that the anti-mtGPAT immunoreactive proteins in wild type and mtGPAT(-/-) liver mitochondria have different isoelectric points. These results suggested the presence of a second GPAT in liver mitochondria from mtGPAT(-/-) mice. Characterization of this GPAT activity in liver from mtGPAT null mice showed that, unlike the mtGPAT activity in wild type samples, activity in mtGPAT knockout mitochondria did not prefer palmitoyl-CoA, was sensitive to inactivation by NEM, was inhibited by dihydroxyacetone phosphate and polymixin B, was temperature-sensitive, and was not activated by acetone. We conclude that a novel GPAT (mtGPAT2) with antigenic epitopes similar to those of mtGPAT is detectable in mitochondria from the livers of mtGPAT(-/-) mice.  相似文献   
84.

Background  

Insertions and deletions of DNA segments (indels) are together with substitutions the major mutational processes that generate genetic variation. Here we focus on recent DNA insertions and deletions in protein coding regions of the human genome to investigate selective constraints on indels in protein evolution.  相似文献   
85.
Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type‐IV secretion system. Injected CagA becomes tyrosine‐phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high‐resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence‐associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ‘master key’ that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin‐cytoskeletal rearrangements and the disruption of cell‐to‐cell junctions as well as proliferative, pro‐inflammatory and anti‐apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon.  相似文献   
86.
We have identified a means by which agonist-evoked responses of nicotinic receptors can be conditionally eliminated. Modification of α7L119C mutants by the sulfhydryl reagent 2-aminoethyl methanethiosulfonate (MTSEA) reduces responses to acetylcholine (ACh) by more than 97%, whereas corresponding mutations in muscle-type receptors produce effects that depend on the specific subunits mutated and ACh concentration. We coexpressed α7L119C subunits with pseudo wild-type α7C116S subunits, as well as ACh-insensitive α7Y188F subunits with wild-type α7 subunits in Xenopus laevis oocytes using varying ratios of cRNA. When mutant α7 cRNA was coinjected at a 5:1 ratio with wild-type cRNA, net charge responses to 300 μM ACh were retained by α7L119C-containing mutants after MTSEA modification and by the ACh-insensitive Y188F-containing mutants, even though the expected number of ACh-sensitive wild-type binding sites would on average be fewer than two per receptor. Responses of muscle-type receptors with one MTSEA-sensitive subunit were reduced at low ACh concentrations, but much less of an effect was observed when ACh concentrations were high (1 mM), indicating that saturation of a single binding site with agonist can evoke strong activation of nicotinic ACh receptors. Single-channel patch clamp analysis revealed that the burst durations of fetal wild-type and α1β1γδL121C receptors were equivalent until the α1β1γδL121C mutants were exposed to MTSEA, after which the majority (81%) of bursts were brief (≤2 ms). The longest duration events of the receptors modified at only one binding site were similar to the long bursts of native receptors traditionally associated with the activation of receptors with two sites containing bound agonists.  相似文献   
87.

Background  

Campylobacter jejuni is the predominant cause of antecedent infection in post-infectious neuropathies such as the Guillain-Barré (GBS) and Miller Fisher syndromes (MFS). GBS and MFS are probably induced by molecular mimicry between human gangliosides and bacterial lipo-oligosaccharides (LOS). This study describes a new C. jejuni-specific high-throughput AFLP (htAFLP) approach for detection and identification of DNA polymorphism, in general, and of putative GBS/MFS-markers, in particular.  相似文献   
88.
The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian isolates. Previous synthetic protocols have been improved to provide a synthetic full length H1N1 type PB1-F2 protein that is encoded by the 'Spanish flu' isolate and an equivalent protein from an avian host that is representative of a highly pathogenic H5N1 'bird flu' isolate, termed SF2 and BF2, respectively. Full length SF2, different mutants of BF2 and a number of fragments of these peptides have been synthesized by either the standard solid-phase peptide synthesis method or by native chemical ligation of unprotected N- and C-terminal peptide fragments. For SF2 chemical ligation made use of the histidine and the cysteine residues located in positions 41 and 42 of the native sequence, respectively, to afford a highly efficient synthesis of SF2 compared to the standard SPPS elongation method. By-product formation at the aspartic acid residue in position 23 was prevented by specific modifications of the SPPS protocol. As the native sequence of BF2 does not contain a cysteine residue two different mutants of BF2 (Y42C) and BF2 (S47C) with appropriate cysteine exchanges were produced. In addition to the full length molecules, fragments of the native sequences were synthesized for comparison of their physical characteristics with those from the H1N1 human isolate A/Puerto Rico/8/34 (H1N1). All peptides were analyzed by mass spectrometry, (1)H NMR spectroscopy, and SDS-PAGE. The protocols allow the synthesis of significant amounts of PB1-F2 and its related peptides. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
89.
Kallikrein-related peptidases (KLKs) are a family of serine proteases that were shown to be useful cancer biomarkers. KLKs have been shown to be dysregulated in prostate cancer (PCa). microRNAs (miRNAs) are short RNA nucleotides that negatively regulate gene expression and have been reportedly dysregulated in PCa. We compiled a comprehensive list of 55 miRNAs that are differentially expressed in PCa from previous microarray analysis and published literature. Target prediction analyses showed that 29 of these miRNAs are predicted to target 10 KLKs. Eight of these miRNAs were predicted to target more than one KLK. Quantitative real-time (qRT)-PCR demonstrated that there was an inverse correlation pattern in the expression (normal vs. cancer) between dysregulated miRNAs and their target KLKs. In addition, we experientially validated the miRNA-KLK interaction by transfecting miR-331-3p and miR-143 into a PCa cell line. Decreased expression of targets KLK4 and KLK10, respectively, and decreased cellular growth were observed. In addition to KLKs, dysregulated miRNAs were predicted to target other genes involved in the pathogenesis of PCa. These data show that miRNAs can contribute to KLK regulation in PCa. The miRNA-KLK axis of interaction projects a new element in the pathogenesis of PCa that may have therapeutic implications.  相似文献   
90.
Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号