首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   46篇
  2023年   2篇
  2021年   9篇
  2020年   2篇
  2019年   8篇
  2018年   5篇
  2017年   13篇
  2016年   7篇
  2015年   11篇
  2014年   19篇
  2013年   28篇
  2012年   27篇
  2011年   13篇
  2010年   13篇
  2009年   9篇
  2008年   15篇
  2007年   13篇
  2006年   21篇
  2005年   14篇
  2004年   11篇
  2003年   12篇
  2002年   10篇
  2001年   15篇
  2000年   9篇
  1999年   15篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   10篇
  1990年   3篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   9篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   11篇
  1980年   2篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1973年   3篇
  1969年   1篇
排序方式: 共有417条查询结果,搜索用时 31 毫秒
41.
The present study was conducted to investigate the effect of the residue of Chenopodium murale L. on growth, nodulation and macromolecule content of two legume crops, viz., Cicer arietinum L. (chickpea) and Pisum sativum L. (pea). A significant reduction in root and shoot length as well as dry matter accumulation occurred when both the legumes were grown in the soil amended with 5, 10, 20 and 40 g residue kg−1 soil. In general, a gradual decline in growth was associated with an increasing amount of residues in the soil. There was also a significant reduction in total chlorophyll content and the amounts of protein and carbohydrates (macromolecules) in plants growing in the residue-amended soil. The nodulation was completely absent in chickpea and pea when the plants were grown in the soil amended with 10 and 20 g residue kg−1 soil, respectively. At a lower rate of residue amendment (5 g kg−1 soil), a significant decline in nodule number and weight, and leghaemoglobin content was recorded. Root oxidizability, an indirect measure of tissue viability and cellular respiration, was adversely affected in both the legumes under various treatments of residue amendment. The observed growth reduction concomitant with increased proline accumulation indicated the presence of some inhibitory compounds in the residue-amended soil. It was rich in phenolics identified as protocatechuic, ferulic, p-coumaric and syringic acid with 12.8, 30.4, 20.2 and 33.6% relative content, respectively. The results suggest that the residue of C. murale releases phenolic allelochemicals, which deleteriously affect the growth, nodulation and macromolecule content of chickpea and pea.  相似文献   
42.
Protectins are newly identified natural chemical mediators that counter leukocyte activation to promote resolution of inflammation. In this study, we provide the first evidence for protectin D1 (PD1, 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid) formation from docosahexaenoic acid in human asthma in vivo and PD1 counterregulatory actions in allergic airway inflammation. PD1 and 17S-hydroxy-docosahexaenoic acid were present in exhaled breath condensates from healthy subjects. Of interest, levels of PD1 were significantly lower in exhaled breath condensates from subjects with asthma exacerbations. PD1 was also present in extracts of murine lungs from both control animals and those sensitized and aerosol challenged with allergen. When PD1 was administered before aeroallergen challenge, airway eosinophil and T lymphocyte recruitment were decreased, as were airway mucus, levels of specific proinflammatory mediators, including IL-13, cysteinyl leukotrienes, and PGD(2), and airway hyperresponsiveness to inhaled methacholine. Of interest, PD1 treatment after aeroallergen challenge markedly accelerated the resolution of airway inflammation. Together, these findings provide evidence for endogenous PD1 as a pivotal counterregulatory signal in allergic airway inflammation and point to new therapeutic strategies for modulating inflammation in asthmatic lung.  相似文献   
43.
Abnormal dietary intake of macronutrients is implicated in the development of obesity and fatty liver disease. Steatosis develops in cultured hepatocytes exposed to medium containing either a high concentration of long chain free fatty acids (HFFA) or medium deficient in methionine and choline (MCD). This study examined the mitochondrial reactive oxygen species (ROS)-dependent regulation of the phosphoinositol (PI) 3-kinase pathway in steatosis induced by exposure of AML-12 mouse hepatocytes to MCD or HFFA medium. Exposure to either MCD or HFFA medium resulted in increased production of superoxide anions and H(2)O(2), transduction of the PI 3-kinase pathway and steatosis. Inhibition of PI 3-kinase with LY294002 prevented steatosis. Pharmacologically inhibiting electron transport chain complex III production of ROS prevented activation of PI 3-kinase during macronutrient perturbation, whereas pharmacologically promoting electron transport chain complex III ROS production activated PI 3-kinase independent of nutrient input. The data suggest that H(2)O(2) is the ROS species involved in signal transduction; promoting the rapid conversion of superoxide to H(2)O(2) does not inhibit PI 3-kinase pathway activation during nutrient perturbation, and exogenous H(2)O(2) activates it independent of nutrient input. In addition to transducing PI 3-kinase, the ROS-dependent signal cascade amplifies the PI 3-kinase signal by maintaining phosphatase and tensin homolog in its inactive phosphorylated state. Knockdown of phosphatase and tensin homolog by small interfering RNA independently activated the PI 3-kinase pathway. Our findings suggest a common path for response to altered nutrition involving mitochondrial ROS-dependent PI 3-kinase pathway regulation, leading to steatosis.  相似文献   
44.
Biofilm formation (BF) in the setting of candiduria has not been well studied. We determined BF and MIC to antifungals in Candida spp. isolates grown from urine samples of patients and performed a retrospective chart review to examine the correlation with risk factors. A total of 67 Candida spp. isolates were grown from urine samples from 55 patients. The species distribution was C. albicans (54%), C. glabrata (36%), and C. tropicalis (10%). BF varied greatly among individual Candida isolates but was stable in sequential isolates during chronic infection. BF also depended on the growth medium and especially in C. albicans was significantly enhanced in artificial urine (AU) compared to RPMI medium. In nine of the C. albicans strains BF was 4- to 10-fold higher in AU, whereas in three of the C. albicans strains and two of the C. glabrata strains higher BF was measured in RPMI medium than in AU. Determination of the MICs showed that planktonic cells of all strains were susceptible to amphotericin B (AMB) and caspofungin (CASPO) and that three of the C. glabrata strains and two of the C. albicans strains were resistant to fluconazole (FLU). In contrast, all biofilm-associated adherent cells were resistant to CASPO and FLU. The biofilms of 14 strains (28%) were sensitive to AMB (MIC50 of <1 μg/ml). Correlation between degree of BF and MIC of AMB was not seen in RPMI grown biofilms but was present when grown in AU. A retrospective chart review demonstrated no correlation of known risk factors of candiduria with BF in AU or RPMI. We conclude that BF is a stable characteristic of Candida strains that varies greatly among clinical strains and is dependent on the growth medium. Resistance to AMB is associated with higher BF in AU, which may represent the more physiologic medium to test BF. Future studies should address whether in vitro BF can predict treatment failure in vivo.  相似文献   
45.
Citronellol, an oxygenated monoterpene, is found naturally in the essential oils of several aromatic plants and has been reported to exhibit growth inhibitory and pesticidal activities. However, its mechanism of action is largely unexplored. We investigated the effect of citronellol, which is lipophilic in nature on membrane integrity in terms of lipid peroxidation, conjugated dienes content, membrane permeability, cell death, and activity of the enzyme lipoxygenase in roots of hydroponically grown wheat. Citronellol (50-250 microM) caused a significant inhibition of root and shoot growth. Furthermore, exposure to citronellol enhanced the solute leakage, increased the malondialdehyde content and lipoxygenase activity, and decreased the conjugated diene content. This indicates that citronellol induces generation of reactive oxygen species (ROS) resulting in lipid peroxidation and membrane damage. This was confirmed by in situ histochemical studies indicating cell death and disruption of membrane integrity. We conclude from this study that citronellol inhibits the root growth by ROS-mediated membrane disruption.  相似文献   
46.
47.
The purification and characterization of the buffalo liver microsomal transacetylase (TAase) catalyzing the transfer of acetyl groups from a model acetoxy drug: 7,8-diacetoxy-4-methylcoumarin (DAMC) to GST3-3 has been described here. The enzyme was routinely assayed using DAMC and cytosolic GST as the substrates and was partially purified from microsomes of the buffalo liver. The enzyme was found to have approximate molecular of weight 65 kDa. The action of TAase and DAMC on liver cytosolic GST resulted in the formation of monoacetoxymonohydroxy-4-methylcoumarin (MAMHC) and 7,8-dihydroxy-4-methylcoumarin (DHMC), although the former was the major metabolite. The buffalo liver microsomal TAase exhibited hyperbolic kinetics and yielded K(m) (1667 microM) and V(max) (192 units) when the concentration of DAMC was varied keeping the concentration of GST constant. After having characterized the nature of the substrates and a product of the TAase-catalyzed reaction, we set out to identify the acetylated protein which is another product of the reaction. GST3-3 was used as a model protein substrate for the action of TAase using DAMC as the acetyl donor. The subunit of control and modified GST3-3 were separated by SDS-polyacrylamide gel electrophoresis (PAGE) and digested with trypsin. The tryptic peptides were extracted from the gel pieces and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOFMS). The data search for calibrated and labeled mass peaks of peptides was performed on the Matrix Science Server using the search engine Mascot. The peptide maps so obtained covered 97% of the GST3-3 sequence. On comparison of MALDI peptide maps of modified and control GST, seven new peaks were recognized corresponding to the potentially acetylated peptides in peptide map. The mass value of each of them was 42 Da higher than the theoretical mass of a non-modified GST3-3 tryptic peptide, strongly suggesting acetylation. By examining the fragmentation patterns and by comparing experimental and predicted values for MS/MS daughter ions, the identity of the seven acetylated GST tryptic peptides could be confirmed by the application of LC/MS/MS. In the modified GST, N-terminal proline and six lysines (Lys(51), Lys(82), Lys(123), Lsy(181), Lys(191) and Lys(210)) were found to be acetylated. The structure of acetylated GST revealed that the lysines that underwent acetylation were peripheral in positions.  相似文献   
48.
Impedance characteristics of lens tissue has been studied using the AC impedance system (EG&G PARC, model 318) at different low voltage excitations using a Cole-Cole Plot. The extracellular resistance (Re), intracellular resistance (Ri), depressed angle (theta), total impedance (/Z/), and phase angle (phi) of the tissue were measured. The impedance locus between the real part (Z') and imaginary part (Z') of the complex impedance of lens was examined at discrete frequencies ranging from 10 mHz to 10 Hz. A decrease in extra-cellular resistance (Re) and increase in distribution of the factor (alpha) of 56.8 KOmega, 48.1 KOmega, 32.8 KOmega, 13.4 KOmega, and 0.40, 0.43, 0.46, 0.53 were found at 0 mV, 50 mV, 100 mV, and 200 mV, respectively. The total impedance (/Z/) and phase angle (phi) were also evaluated and the observed frequency dependent for the frequency range was tested as a function of excitation voltage. An attempt has been made to explain the effect of voltage stress on lens impedance.  相似文献   
49.
Greger IH  Akamine P  Khatri L  Ziff EB 《Neuron》2006,51(1):85-97
The subunit composition determines AMPA receptor (AMPA-R) function and trafficking. Mechanisms underlying channel assembly are thus central to the efficacy and plasticity of glutamatergic synapses. We previously showed that RNA editing at the Q/R site of the GluR2 subunit contributes to the assembly of AMPA-R heteromers by attenuating formation of GluR2 homotetramers. Here we report that this function of the Q/R site depends on subunit contacts between adjacent ligand binding domains (LBDs). Changes of LBD interface contacts alter GluR2 assembly properties, forward traffic, and expression at synapses. Interestingly, developmentally regulated RNA editing within the LBD (at the R/G site) produces analogous effects. Our data reveal that editing to glycine reduces the self-assembly competence of this critical subunit and slows GluR2 maturation in the endoplasmic reticulum (ER). Therefore, RNA editing sites, located at strategic subunit interfaces, shape AMPA-R assembly and trafficking in a developmentally regulated manner.  相似文献   
50.
BOA (2-benzoxazolinone) is a potent phytotoxin present in several graminaceous crops such as rye, maize and wheat. Due to its wide range of phytotoxicity, it is considered as a potential pesticide. A study was conducted to explore the impact of BOA on the radicle and plumule elongation of mung bean (Phaseolus aureus) and associated changes in the macromolecular content - proteins and carbohydrates - and activities of enzymes like amylases, proteases, polyphenol oxidases and peroxidases. BOA significantly reduced the radicle and plumule length of P. aureus, and the contents of proteins and carbohydrates in both root and leaf tissue. On the other hand, activities of hydrolytic enzymes - proteases, amylases, polyphenol oxidases and peroxidases - increased substantially in both root and leaf tissue of P. aureus upon BOA exposure. This indicated that BOA treatment induced stress in P. aureus and enhanced enzyme activities to counter the induced stress and continue the growth. In other words, BOA-induced stress altered the plant biochemical status and related enzyme activities resulting in increased metabolism that serves to provide protection against cellular injury. Such studies providing information about the biomolecular content and enzymatic activities in response to natural products serve as clues for furtherance of knowledge about the modes of action of natural compounds of commercial interest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号