首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   6篇
  129篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   7篇
  2014年   9篇
  2013年   6篇
  2012年   16篇
  2011年   8篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   12篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  1998年   3篇
  1994年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
31.
Cytoplasmic desulfothioredoxin (Dtrx) from the anaerobe Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thiol disulfide oxidoreductase family. The active site of Dtrx contains a particular consensus sequence, CPHC, never seen in the cytoplasmic thioredoxins and generally found in periplasmic oxidases. Unlike canonical thioredoxins (Trx), Dtrx does not present any disulfide reductase activity, but it presents instead an unusual disulfide isomerase activity. We have used NMR spectroscopy to gain insights into the structure and the catalytic mechanism of this unusual Dtrx. The redox potential of Dtrx (-181 mV) is significantly less reducing than that of canonical Trx. A pH dependence study allowed the determination of the pK(a) of all protonable residues, including the cysteine and histidine residues. Thus, the pK(a) values for the thiol group of Cys(31) and Cys(34) are 4.8 and 11.3, respectively. The His(33) pK(a) value, experimentally determined for the first time, differs notably as a function of the redox states, 7.2 for the reduced state and 4.6 for the oxidized state. These data suggest an important role for His(33) in the molecular mechanism of Dtrx catalysis that is confirmed by the properties of mutant DtrxH33G protein. The NMR structure of Dtrx shows a different charge repartition compared with canonical Trx. The results presented are likely indicative of the involvement of this protein in the catalysis of substrates specific of the anaerobe cytoplasm of DvH. The study of Dtrx is an important step toward revealing the molecular details of the thiol-disulfide oxidoreductase catalytic mechanism.  相似文献   
32.
The effects of cadmium (Cd) on cellular proteolytic responses were investigated in the roots and leaves of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 3 and 10 days in the presence of 0.3–300 μM Cd and compared to control plants grown in the absence of Cd. Roots of Cd treated plants accumulated four to fivefold Cd as much as mature leaves. Although 10 days of culture at high Cd concentrations inhibited plant growth, tomato plants recovered and were still able to grow again after Cd removal. Tomato roots and leaves are not modified in their proteolytic response with low Cd concentrations (≤3 μM) in the incubation medium. At higher Cd concentration, protein oxidation state and protease activities are modified in roots and leaves although in different ways. The soluble protein content of leaves decreased and protein carbonylation level increased indicative of an oxidative stress. Conversely, protein content of roots increased from 30 to 50%, but the amount of oxidized proteins decreased by two to threefold. Proteolysis responded earlier in leaves than in root to Cd stress. Additionally, whereas cysteine- and metallo-endopeptidase activities, as well as proteasome chymotrypsin activity and subunit expression level, increased in roots and leaves, serine-endopeptidase activities increased only in leaves. This contrasted response between roots and leaves may reflect differences in Cd compartmentation and/or complexation, antioxidant responses and metabolic sensitivity to Cd between plant tissues. The up-regulation of the 20S proteasome gene expression and proteolytic activity argues in favor of the involvement of the 20S proteasome in the degradation of oxidized proteins in plants. This paper is dedicated to Nathalie Galtier (1964–2005), who was senior researcher at the INRA Research Center, Villenave d’Ornon, France.  相似文献   
33.
Hepatocellular carcinoma (HCC) ranks among the 10 most common cancers worldwide. The main risk factors for its development are hepatitis B and C virus infections. Hepatitis B and C viruses induce chronic inflammation and oxidative stress that could predispose a cell to mutagenesis and proliferation. Manganese superoxide dismutase (MnSOD) catalyses the detoxification of free radicals, thus playing a crucial role in the protection against damage. A valine (Val) to alanine (Ala) substitution at amino acid 9, mapping within the mitochondrion-targeting sequence of the MnSOD gene, has been associated with an increased cancer risk. The aim of our study was to investigate a possible association of the Val/Ala-MnSOD polymorphism and HCC development in Moroccan patients. Genotypes were determined by means of PCR and RFLP analysis in 96 patients with HCC and 222 control subjects matched for age, sex, and ethnicity. Homozygous Ala/Ala carriers were 31% in the cases and 18% in the controls, which corresponds to an odds ratio (OR) of 2.89, with a 95% confidence interval (CI) of 1.47-5.68. Stratification into subgroups based on HCV infection status revealed an even more increased risk for homozygous Ala/Ala carriers with hepatitis C infection (38.2% in the cases versus 14.8% in the control subjects OR, 5.09; 95% CI, 1.76-14.66). Our findings provide further evidence of an association between the Ala-9Val MnSOD polymorphism and HCC occurrence in hepatitis C virus-infected Moroccan patients.  相似文献   
34.
35.
36.
A high resolution micropalaeontological study of the core MD 04-2797 CQ recovered in the Sicilian–Tunisian Strait provides insights into the paleoclimatic history of the Mediterranean Sea at the transition between the western and eastern basin over the last 30 ka. Using the analysis of dinoflagellate cyst and planktonic foraminiferal assemblages, we reconstruct the paleoenvironmental changes that took place in this region. High abundances of cold temperate dinocyst species (Nematosphaeropsis labyrinthus, Spiniferites elongatus, Bitectatodinium tepikiense) and the polar planktonic foraminifera Neogloboquadrina pachyderma (left coiling) reveal three major cooling events synchronous with North Atlantic Henrich events 1 and 2 (H1 and H2) and the European and North Atlantic Younger Dryas event. During the Holocene, the presence of warm dinocyst species (Spiniferites mirabilis and Impagidinium aculeatum) and planktonic foraminifera (Globorotalia inflata and Globigerinoides ruber), reflects a significant increase of sea surface temperatures in the western Mediterranean basin, but a full warming was not recorded until 1500 years after the onset of the Holocene. Moreover, our results show that the Holocene was interrupted by at least four brief cooling events at ~ 9.2 ka, ~ 8 ka, ~ 7 ka and ~ 2.2 ka cal. BP, which may be correlated to climatic events recorded in Greenland ice cores and in the Atlantic Ocean.  相似文献   
37.
In the heme-based oxygen sensor Dos from Escherichia coli, one of the axial ligands (Met 95) of a six-coordinate heme can be replaced by external ligands such as O(2), NO, and CO, which causes a switch in phosphodiesterase activity. To gain insight into the bidirectional switching mechanism, we have studied the interaction of ligands with the sensor domain DosH by flash photolysis experiments with femtosecond time resolution. The internal ligand can be photodissociated from the ferrous heme and recombines with time constants of 7 and 35 ps. This is somewhat slower than recombination of the external ligands NO, with which picosecond rebinding occurs with unprecedented efficiency (>99%) with a predominant phase of approximately 5 ps, and O(2) (97% in 5 ps, Liebl, U., Bouzhir-Sima, L., Négrerie, M., Martin, J.-L., and Vos, M. H. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 12771-12776). Dissociated CO displays geminate rebinding in 1.5 ns with a very high yield (60%). Together these results indicate that the heme environment provides a very tight pocket for external ligands, presumably preventing frequent switching events. Additional CO dissociation and rebinding experiments on a longer time scale reveal that (a) Met 95 binding, in 100 micros, occurs in competition with bimolecular CO binding, and (b) subsequent replacement of Met 95 by CO on the millisecond time scale occurs faster than in rapid-mixing experiments, suggesting a slow further relaxation. A minimal ligand binding model is proposed that suggests that Met 95 displacement from the heme is facilitated by the presence of an external ligand in the heme environment. Furthermore, the orders of magnitude difference between Met 95 binding after dissociation of internal and external ligands, as well as the spectral characteristics of photodissociation intermediates, indicate substantial rearrangement of the heme environment associated with ligand sensing. Further remarkable observations include evidence for stable (>4 ns) photooxidation of six-coordinate ferrous heme, with a quantum yield of 4-8%.  相似文献   
38.
Calcium alginate-immobilized Candida tropicalis and Saccharomyces cerevisiae are compared for glucose fermentation. Immobilized C. tropicalis cells showed a slight morphological alteration during ethanol production at 40 degrees C, but their fermentation capacity was reduced by 25%. Under immobilization conditions, the two species demonstrated two different mathematical patterns when the relationship between growth rate, respiration rate, and ethanol tolerance was assessed. The interspecific difference in behavior of immobilized yeast cells is mainly due to their natural metabolic preference. The production of CO(2) by calcium alginate-immobilized C. tropicalis, as well as the lower supply of oxygen to the cells, are the major factors that reduce ethanol production.  相似文献   
39.
40.
In this work, we investigate the influence of crosslinkers on the operational and heat stability of immobilized enzymes on a silanized silicon surface. To this end, glucose-6-phosphate dehydrogenase (G6PDH), a model multimeric enzyme, was attached through bifunctional crosslinkers able to bind covalently the ?NH2 in the silane layer and of amine residues in the enzyme. Five bifunctional crosslinkers in the form of “X-spacer-X” were used, differing by the reactive functional groups (X = aldehyde: ?CHO, isothiocyanate: ?NCS, isocyanate: ?NCO), by the nature of the spacer chain (aromatic or aliphatic) or by the geometry (bifunctional groups positioned in meta- or para- on an aromatic ring). A thermostability enhancement has been obtained for enzymes immobilized using 1,4-phenylene diisothiocyanate (PDC) and 1,4-phenylene diisocyanate (DIC). Moreover, using the latter crosslinker, activity was the mostly preserved upon successive uses, thus giving the best operational stability achieved. Changing the geometry of the cross-linker, i.e., 1,4- as compared to 1,3-phenylene diisothiocyanate (PDC and MDC, respectively), has a crucial effect on operational and thermal stabilities. Indeed, among all used crosslinkers, the most important loss was observed for MDC (residual activity after 6 times use is ~16%). Using dialdehyde crosslinkers: glutaraldehyde (GA) and terephtalaldehyde (TE), activity was significantly less well preserved than with DIC and PDC (for GA and TE, a loss of about 50% at 30 °C against no loss for PDC and DIC).These effects can be explained by a multipoint attachment model, in which a higher number of anchoring points stabilizes the three-dimensional structure and especially the binding of the two subunits in the active dimer, at the expense of a greater rigidity which is detrimental to the absolute activity. The differences observed with the crosslinkers are mainly due to steric hindrance at the interface which seems to be greatly influenced by the structure and the reactivity of the linkers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号