首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   41篇
  2020年   1篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   7篇
  2009年   1篇
  2008年   6篇
  2007年   5篇
  2006年   9篇
  2005年   7篇
  2004年   10篇
  2003年   5篇
  2002年   12篇
  2001年   13篇
  2000年   9篇
  1999年   11篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   7篇
  1991年   10篇
  1990年   13篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
  1953年   1篇
排序方式: 共有196条查询结果,搜索用时 558 毫秒
101.
The 27-kDa heat shock protein (HSP27) has a potent ability to increase cell survival in response to a wide range of cellular challenges. In order to investigate the mode of action of HSP27 in vivo, we have developed transgenic lines, which express human HSP27 at high levels throughout the brain, spinal cord, and other tissues. In view of the particular property of HSP27 compared with other HSPs to protect neurons against apoptosis, we have tested these transgenic lines in a well established in vivo model of neurotoxicity produced by kainic acid, where apoptotic cell death occurs. Our results demonstrate for the first time the marked protective effects of HSP27 overexpression in vivo, which significantly reduces kainate-induced seizure severity and mortality rate (>50%) in two independent lines and markedly reduces neuronal cell death in the CA3 region of hippocampus. This reduced seizure severity in HSP27 transgenic animals was associated with a marked attenuation of caspase 3 induction and apoptotic features. These studies clearly demonstrate that HSP27 has a major neuroprotective effect in the central nervous system in keeping with its properties demonstrated in culture and highlight an early stage in the cell death pathway that is affected by HSP27.  相似文献   
102.
Gene therapy involves the use of specific genes to treat human diseases and is thus critically dependent on efficient gene delivery systems. Although a variety of systems for such gene delivery are under development, HSV has unique advantages in terms of its large genome size and for gene delivery in the nervous system because of its ability to enter a latent state in neuronal cells. Considerable progress has been made in the effective disablement of this virus whilst retaining its ability to deliver genes and in producing long term expression of the foreign gene. Although much remains to be achieved in the further disablement of the virus and its testing in rodent and primate models of human diseases, it is likely that these viruses may ultimately be of use in human gene therapy procedures particularly for otherwise intractable neurological diseases.  相似文献   
103.
104.
In this study we used an in vitro model of delayed preconditioning to investigate activation of mitogen-activated protein kinases (MAPKs) and their potential role in protection. Neonatal rat cardiomyocytes were preconditioned using a buffer containing glycolytic inhibitors and low pH (minimal metabolic preconditioning; MMPC) consisting of modified Krebs buffer, 10 mM 2-deoxyglucose, and 20 mM lactate, pH 6.8, for 2 h followed by 24 h of simulated reperfusion before lethal simulated ischemia (LSI). MAPK activation during the MMPC protocol was determined using phospho-specific antisera and the effect on protection determined following LSI. Rapid, transient phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 MAPK was observed during each of the MMPC, reperfusion, and LSI phases; an effect blocked by MAPK inhibitors PD-98059 and SB-203580, respectively, but not by the protein kinase C (PKC) inhibitor Ro31-8220. However, although MMPC was blocked by Ro31-8220, treatment with the MAPK inhibitors during the preconditioning protocol did not block delayed protection conferred by MMPC. Thus the data suggest that, in this model of delayed preconditioning, protection appears to be PKC dependent but independent of ERK1/2 or p38 MAPK activation.  相似文献   
105.
The present study examined the physiological impact of a school based sprint interval training (SIT) intervention in replacement of standard physical education (SPE) class on cardio-respiratory fitness (CRF) and glucose homeostasis during the semester following summer vacation. Participants (n=49) were randomly allocated to either intervention (SIT; n=26, aged 16.9 ± 0.3 yrs) or control group who underwent standard physical education (SPE; n=23, aged 16.8 ± 0.6 yrs). CRF (VO2max) and glucose homeostasis were obtained prior-to and following 7 weeks of SIT exercise. Significant group x time interaction was observed for CRF (P < 0.01) with non-significant trends for fasting insulin (P= 0.08), and HOMA-IR (P=0.06). CRF decreased (P < 0.01) in SPE such that POST intervention CRF was significantly lower (P< 0.05) in SPE. Fasting plasma glucose (P < 0.01), insulin (P< 0.01) and HOMA-IR (P< 0.01) increased significantly amongst SPE. The main finding of the present study is that 7-weeks of SIT exercise is an effective method of maintaining (but not improving) CRF and fasting insulin homeostasis amongst school-going adolescents. SIT exercise demonstrates potential as a time efficient physiological adjunct to standard PE class in order to maintain CRF during the school term.  相似文献   
106.

Background  

There are some early clinical indicators of cardiac ischemia, most notably a change in a person's electrocardiogram. Less well understood, but potentially just as dangerous, is ischemia that develops in the gastrointestinal system. Such ischemia is difficult to diagnose without angiography (an invasive and time-consuming procedure) mainly due to the highly unspecific nature of the disease.  相似文献   
107.
108.
109.
110.

Background  

Microarrays used for gene expression studies yield large amounts of data. The processing of such data typically leads to lists of differentially-regulated genes. A common terminal data analysis step is to map pathways of potentially interrelated genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号