首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   836篇
  免费   55篇
  国内免费   2篇
  893篇
  2022年   8篇
  2021年   10篇
  2020年   4篇
  2019年   7篇
  2018年   13篇
  2017年   5篇
  2016年   12篇
  2015年   19篇
  2014年   30篇
  2013年   33篇
  2012年   44篇
  2011年   45篇
  2010年   39篇
  2009年   26篇
  2008年   62篇
  2007年   42篇
  2006年   48篇
  2005年   43篇
  2004年   44篇
  2003年   49篇
  2002年   57篇
  2001年   12篇
  2000年   8篇
  1999年   12篇
  1998年   16篇
  1997年   12篇
  1996年   8篇
  1995年   12篇
  1994年   6篇
  1993年   11篇
  1992年   12篇
  1991年   5篇
  1990年   5篇
  1989年   10篇
  1988年   7篇
  1987年   8篇
  1986年   9篇
  1985年   5篇
  1984年   13篇
  1983年   4篇
  1982年   6篇
  1981年   13篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1974年   6篇
  1973年   8篇
  1971年   7篇
  1970年   3篇
  1966年   4篇
排序方式: 共有893条查询结果,搜索用时 15 毫秒
61.
Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear.In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary – and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies.All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation.It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism.  相似文献   
62.

Background

Bacterial translocation plays important role in the complications of liver cirrhosis. Antibody formation against various microbial antigens is common in Crohn''s disease and considered to be caused by sustained exposure to gut microflora constituents. We hypothesized that anti-microbial antibodies are present in patients with liver cirrhosis and may be associated with the development of bacterial infections.

Methodology/Principal Findings

Sera of 676 patients with various chronic liver diseases (autoimmune diseases:266, viral hepatitis C:124, and liver cirrhosis of different etiology:286) and 100 controls were assayed for antibodies to Saccharomyces cerevisiae(ASCA) and to antigens derived from two intestinal bacterial isolates (one gram positive, one gram negative, neither is Escherichia coli). In patients with liver cirrhosis, we also prospectively recorded the development of severe episodes of bacterial infection. ASCA and anti-OMP Plus™ antibodies were present in 38.5% and 62.6% of patients with cirrhosis and in 16% and 20% of controls, respectively (p<0.001). Occurrence of these antibodies was more frequent in cases of advanced cirrhosis (according to Child-Pugh and MELD score; p<0.001) or in the presence of ascites (p<0.001). During the median follow-up of 425 days, 81 patients (28.3%) presented with severe bacterial infections. Anti-microbial antibody titers (p = 0.003), as well as multiple seroreactivity (p = 0.036), was associated with infectious events. In logistic regression analysis, the presence of ascites (OR:1.62, 95%CI:1.16–2.25), co-morbidities (OR:2.22, 95%CI:1.27–3.86), and ASCA positivity (OR:1.59, 95%CI:1.07–2.36) were independent risk factors for severe infections. A shorter time period until the first infection was associated with the presence of ASCA (p = 0.03) and multiple seropositivity (p = 0.037) by Kaplan-Meier analysis, and with Child-Pugh stage (p = 0.018, OR:1.85) and co-morbidities (p<0.001, OR:2.02) by Cox-regression analysis.

Conclusions/Significance

The present study suggests that systemic reactivity to microbial components reflects compromised mucosal immunity in patients with liver cirrhosis, further supporting the possible role of bacterial translocation in the formation of anti-microbial antibodies.  相似文献   
63.
The expansion of a polymorphic CAG repeat in the HD gene encoding huntingtin has been identified as the major cause of Huntington’s disease (HD) and determines 42–73% of the variance in the age-at-onset of the disease. Polymorphisms in huntingtin interacting or associated genes are thought to modify the course of the disease. To identify genetic modifiers influencing the age at disease onset, we searched for polymorphic markers in the GRIK2, TBP, BDNF, HIP1 and ZDHHC17 genes and analysed seven of them by association studies in 980 independent European HD patients. Screening for unknown sequence variations we found besides several silent variations three polymorphisms in the ZDHHC17 gene. These and polymorphisms in the GRIK2, TBP and BDNF genes were analysed with respect to their association with the HD age-at-onset. Although some of the factors have been defined as genetic modifier factors in previous studies, none of the genes encoding GRIK2, TBP, BDNF and ZDHHC17 could be identified as a genetic modifier for HD.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
64.
65.
The phosphatidylglycerol deficient ΔpgsA mutant of Synechocystis PCC6803 provided a unique experimental system for investigating in vivo retailoring of exogenously added dioleoylphosphatidylglycerol in phosphatidylglycerol-depleted cells. Gas chromatographic analysis of fatty acid composition suggested that diacyl-phosphatidylglycerols were synthesized from the artificial synthetic precursor. The formation of new, retailored lipid species was confirmed by negative-ion electrospray ionization–Fourier-transform ion cyclotron resonance and ion trap tandem mass spectrometry. Various isomeric diacyl-phosphatidylglycerols were identified indicating transesterification of the exogenously added dioleoylphosphatidyl-glycerol at the sn-1 or sn-2 positions. Polyunsaturated fatty acids were incorporated selectively into the sn-1 position. Our experiments with Synechocystis PCC6803/ΔpgsA mutant cells demonstrated lipid remodeling in a prokaryotic photosynthetic bacterium. Our data suggest that the remodeling of diacylphosphatidylglycerol likely involves reactions catalyzed by phospholipase A1 and A2 or acyl-hydrolase, lysophosphatidylglycerol acyltransferase and acyl-lipid desaturases.  相似文献   
66.
Manganese oxide minerals can become enriched in a variety of metals through adsorption and redox processes, and this forms the basis for a close geochemical relationship between Mn oxide phases and Co. Since oxalate-producing fungi can effect geochemical transformation of Mn oxides, an understanding of the fate of Co during such processes could provide new insights on the geochemical behaviour of Co. In this work, the transformation of Mn oxides by Aspergillus niger was investigated using a Co-bearing manganiferous laterite, and a synthetic Co-doped birnessite. A. niger could transform laterite in both fragmented and powder forms, resulting in formation of biomineral crusts that were composed of Mn oxalates hosting Co, Ni and, in transformed laterite fragments, Mg. Total transformation of Co-doped birnessite resulted in precipitation of Co-bearing Mn oxalate. Fungal transformation of the Mn oxide phases included Mn(III,IV) reduction by oxalate, and may also have involved reduction of Co(III) to Co(II). These findings demonstrate that oxalate-producing fungi can influence Co speciation in Mn oxides, with implications for other hosted metals including Al and Fe. This work also provides further understanding of the roles of fungi as geoactive agents which can inform potential applications in metal bioremediation, recycling and biorecovery.  相似文献   
67.
68.
Glycyrrhetinic acid, the metabolite of the natural product glycyrrhizin, is a well known nonselective inhibitor of 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1 and type 2. Whereas inhibition of 11β-HSD1 is currently under consideration for treatment of metabolic diseases, such as obesity and diabetes, 11β-HSD2 inhibitors may find therapeutic applications in chronic inflammatory diseases and certain forms of cancer. Recently, we published a series of hydroxamic acid derivatives of glycyrrhetinic acid showing high selectivity for 11β-HSD2. The most potent and selective compound is active against human 11β-HSD2 in the low nanomolar range with a 350-fold selectivity over human 11β-HSD1. Starting from the lead compounds glycyrrhetinic acid and the hydroxamic acid derivatives, novel triterpene type derivatives were synthesized and analyzed for their biological activity against overexpressed human 11β-HSD1 and 11β-HSD2 in cell lysates. Here we describe novel 29-urea- and 29-hydroxamic acid derivatives of glycyrrhetinic acid as well as derivatives with the Beckman rearrangement of the 3-oxime to a seven-membered ring, and the rearrangement of the C-ring from 11-keto-12-ene to 12-keto-9(11)-ene. The combination of modifications on different positions led to compounds comprising further improved selective inhibition of 11β-HSD2 in the lower nanomolar range with up to 3600-fold selectivity.  相似文献   
69.
70.
It has been shown previously that the unfolded N-terminal domain of the prion protein can bind up to six Cu2+ ions in vitro. This domain contains four tandem repeats of the octapeptide sequence PHGGGWGQ, which, alongside the two histidine residues at positions 96 and 111, contribute to its Cu2+ binding properties. At the maximum metal-ion occupancy each Cu2+ is co-ordinated by a single imidazole and deprotonated backbone amide groups. However two recent studies of peptides representing the octapeptide repeat region of the protein have shown, that at low Cu2+ availability, an alternative mode of co-ordination occurs where the metal ion is bound by multiple histidine imidazole groups. Both modes of binding are readily populated at pH 7.4, while mild acidification to pH 5.5 selects in favour of the low occupancy, multiple imidazole binding mode. We have used NMR to resolve how Cu2+ binds to the full-length prion protein under mildly acidic conditions where multiple histidine co-ordination is dominant. We show that at pH 5.5 the protein binds two Cu2+ ions, and that all six histidine residues of the unfolded N-terminal domain and the N-terminal amine act as ligands. These two sites are of sufficient affinity to be maintained in the presence of millimolar concentrations of competing exogenous histidine. A previously unknown interaction between the N-terminal domain and a site on the C-terminal domain becomes apparent when the protein is loaded with Cu2+. Furthermore, the data reveal that sub-stoichiometric quantities of Cu2+ will cause self-association of the prion protein in vitro, suggesting that Cu2+ may play a role in controlling oligomerization in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号