首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   14篇
  2021年   3篇
  2020年   2篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   9篇
  2002年   9篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1987年   1篇
  1986年   9篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有144条查询结果,搜索用时 187 毫秒
71.
Objective: Thyroid dysfunction is a common endocrine problem during pregnancy; correct diagnosis and appropriate treatments are essential to avoid adverse pregnancy outcomes. Besides, it is vital to identify and quantify the major risk factors for gestational thyroid dysfunction, including thyroid autoimmunity, human chorionic gonadotropin (HCG) concentration, body mass index (BMI) and parity. The study objective was to establish reference ranges during early pregnancy and to explore the relationship between risk factors and thyroid stimulating hormone (TSH), free thyroxine (FT4) and free triiodothyroxine (FT3).Design, patients and measurements: To establish the reference ranges of thyroid hormone during early pregnancy in China and to identify the risk factors for thyroid dysfunction, woman in the first trimester of pregnancy (4–12 weeks gestation) were recruited. After excluding thyroid peroxidase antibody (TPO-Ab) positive and/or thyroglobulin antibody (TG-Ab) positive women, previous thyroid disease, a lack of iodine intake, reference values were calculated by 2.5th to 97.5th percentiles.Results: After exclusion of TPO-Ab and/or TG-Ab positive women, reference values were as follows: TSH, 0.11–3.67 mIU/l; FT3, 3.19–5.91 pmol/l; FT4 10.95–16.79 pmol/l. Higher BMI was associated with lower FT4 concentrations (P=0.005). In multiple regression analysis, TSH was significantly and positively associated with TG (P=0.03). Maternal parity and maternal age may be risk factors for the abnormal thyroidal response to hCG concentrations.Conclusions: Our study defined first trimester-specific reference ranges for serum TSH, FT4, FT3 in a Chinese population, and demonstrated that BMI ≥23kg/m2, maternal parity ≥3 and maternal age ≥30 years may increase the risk of thyroid dysfunction.  相似文献   
72.

Background

Survival of breast cancer patients with comorbidity, compared to those without comorbidity, has been well characterized. The interaction between comorbid diseases and breast cancer, however, has not been well-studied.

Methods

From Danish nationwide medical registries, we identified all breast cancer patients between 45 and 85 years of age diagnosed from 1994 to 2008. Women without breast cancer were matched to the breast cancer patients on specific comorbid diseases included in the Charlson comorbidity Index (CCI). Interaction contrasts were calculated as a measure of synergistic effect on mortality between comorbidity and breast cancer.

Results

The study included 47,904 breast cancer patients and 237,938 matched comparison women. In the first year, the strongest interaction between comorbidity and breast cancer was observed in breast cancer patients with a CCI score of ≥4, which accounted for 29 deaths per 1000 person-years. Among individual comorbidities, dementia interacted strongly with breast cancer and accounted for 148 deaths per 1000 person-years within one year of follow-up. There was little interaction between comorbidity and breast cancer during one to five years of follow-up.

Conclusions

There was substantial interaction between comorbid diseases and breast cancer, affecting mortality. Successful treatment of the comorbid diseases or the breast cancer can delay mortality caused by this interaction in breast cancer patients.  相似文献   
73.
Despite making up only a minor fraction of the total cellular glutathione, recent studies indicate that the mitochondrial glutathione pool is essential for cell survival. Selective depletion of mitochondrial glutathione is sufficient to sensitize cells to mitochondrial oxidative stress (MOS) and intrinsic apoptosis. Glutathione is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. Therefore, regulation of mitochondrial glutathione transport is a key factor in maintaining the antioxidant status of mitochondria. Bcl-2 resides in the outer mitochondrial membrane where it acts as a central regulator of the intrinsic apoptotic cascade. In addition, Bcl-2 displays an antioxidant-like function that has been linked experimentally to the regulation of cellular glutathione content. We have previously demonstrated a novel interaction between recombinant Bcl-2 and reduced glutathione (GSH), which was antagonized by either Bcl-2 homology-3 domain (BH3) mimetics or a BH3-only protein, recombinant Bim. These previous findings prompted us to investigate if this novel Bcl-2/GSH interaction might play a role in regulating mitochondrial glutathione transport. Incubation of primary cultures of cerebellar granule neurons (CGNs) with the BH3 mimetic HA14-1 induced MOS and caused specific depletion of the mitochondrial glutathione pool. Bcl-2 was coimmunoprecipitated with GSH after chemical cross-linking in CGNs and this Bcl-2/GSH interaction was antagonized by preincubation with HA14-1. Moreover, both HA14-1 and recombinant Bim inhibited GSH transport into isolated rat brain mitochondria. To further investigate a possible link between Bcl-2 function and mitochondrial glutathione transport, we next examined if Bcl-2 associated with the 2-oxoglutarate carrier (OGC), an inner mitochondrial membrane protein known to transport glutathione in liver and kidney. After cotransfection of CHO cells, Bcl-2 was coimmunoprecipitated with OGC and this novel interaction was significantly enhanced by glutathione monoethyl ester. Similarly, recombinant Bcl-2 interacted with recombinant OGC in the presence of GSH. Bcl-2 and OGC cotransfection in CHO cells significantly increased the mitochondrial glutathione pool. Finally, the ability of Bcl-2 to protect CHO cells from apoptosis induced by hydrogen peroxide was significantly attenuated by the OGC inhibitor phenylsuccinate. These data suggest that GSH binding by Bcl-2 enhances its affinity for the OGC. Bcl-2 and OGC appear to act in a coordinated manner to increase the mitochondrial glutathione pool and enhance resistance of cells to oxidative stress. We conclude that regulation of mitochondrial glutathione transport is a principal mechanism by which Bcl-2 suppresses MOS.  相似文献   
74.
75.
In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, Human¡VMouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov.  相似文献   
76.
77.
Eight-week-old rats inhaled manganese (Mn) in the form of MnSO4 at 0, 0.03, 0.3, or 3.0 mg Mn/m3 for 6 h/d for 7 d/wk (14 consecutive exposures). Brain manganese concentrations in these animals were reported by Dorman et al. in 2001, noting the following rank order: olfactory bulb>striatum>cerebellum. We assessed biochemical end points indicative of oxidative stress in these three brain regions, as well as the hypothalamus and hippocampus. Glutamine synthetase (GS) protein levels and total glutathione (GSH) levels were determined for all five regions. GS mRNA and metallothionein (MT) mRNA levels were also evaluated for the cerebellum, hypothalamus, and hippocampus. Statistically significant increases (p<0.05) in GS protein were observed in the olfactory bulb upon exposure to the medium and high manganese doses. In the hypothalamus, statistically significant (p<0.05) but more modest increases were also noted in the medium and high manganese dose. Total GSH levels significantly (p<0.05) decreased only in the hypothalamus (high manganese dose), and MT mRNA significantly increased in the hypothalamus (medium manganese dose). No significant changes were noted in any of the measured parameters in the striatum, although manganese concentrations in this region were also increased. These results demonstrate that the olfactory bulb and hypothalamus represent potentially sensitive areas to oxidative stress induced by exceedingly high levels of inhaled manganese sulfate and that other regions, and especially the striatum, are resistant to manganese-induced oxidative stress despite significant accumulation of this metal.  相似文献   
78.
The tripeptide GSH is important in maintenance of renal redox status and defense against reactive electrophiles and oxidants. Previous studies showed that GSH is transported across the basolateral plasma membrane (BLM) into the renal proximal tubule by both sodium-coupled and sodium-independent pathways. Substrate specificity and inhibitor studies suggested the function of several carriers, including organic anion transporter 3 (Oat3). To test the hypothesis that rat Oat3 can function in renal GSH transport, the cDNA for rat Oat3 was expressed as a His6-tagged protein in E. coli, purified from inclusion bodies and by Ni2+-affinity chromatography, and reconstituted into proteoliposomes. cDNA-expressed and reconstituted Oat3 transported both GSH and p-aminohippurate (PAH) in exchange for 2-oxoglutarate (2-OG) and 2-OG and PAH in exchange for GSH, and PAH uptake was inhibited by both probenecid and furosemide, consistent with function of Oat3. mRNA expression of Oat3 and several other potential carriers was detected by RT-PCR in rat kidney cortex but was absent from NRK-52E cells, a rat proximal tubular cell line. Basolateral uptake of GSH in NRK-52E cells showed little PAH- or 2-OG-stimulated uptake. We conclude that Oat3 can function in GSH uptake and that NRK-52E cells possess a low background rate of GSH uptake, making these cells a good model for overexpression of specific, putative GSH carriers.  相似文献   
79.
Coproporphyrinogen oxidase (CPO) is the sixth enzyme in the heme biosynthetic pathway, catalyzing two sequential oxidative decarboxylations of propionate moieties on coproporphyrinogen-III forming protoporphyrinogen-IX through a monovinyl intermediate, harderoporphyrinogen. Site-directed mutagenesis studies were carried out on three invariant amino acids, aspartate 400, arginine 262, and arginine 401, to determine residue contribution to substrate binding and/or catalysis by human recombinant CPO. Kinetic analyses were performed on mutant enzymes incubated with three substrates, coproporphyrinogen-III, harderoporphyrinogen, or mesoporphyrinogen-VI, in order to determine catalytic ability to perform the first and/or second oxidative decarboxylation. When Asp400 was mutated to alanine no divinyl product was detected, but the production of a small amount of monovinyl product suggested the K(m) value for coproporphyrinogen-III did not change significantly compared to the wild-type enzyme. Upon mutation of Arg262 to alanine, CPO was again a poor catalyst for the production of a divinyl product, with a catalytic efficiency <0.01% compared to wild-type, including a 15-fold higher K(m) for coproporphyrinogen-III. The efficiency of divinyl product formation for mutant enzyme Arg401Ala was approximately 3% compared to wild-type CPO, with a threefold increase in the K(m) value for coproporphyrinogen-III. These data suggest Asp400, Arg262, and Arg401 are active site amino acids critical for substrate binding and/or catalysis. Possible roles for arginine 262 and 401 include coordination of carboxylate groups of coproporphyrinogen-III, while aspartate 400 may initiate deprotonation of substrate, resulting in an oxidative decarboxylation.  相似文献   
80.
The pathway of directional movement of chick precardiac mesoderm cells was studied by indirect immunofluorescence and by scanning electron microscopy. Directional movement of the precardiac cells begins at stage 6 from the lateral sides of the embryo at the level of Hensen's node. The cells move anteriorly in an arc to the embryo's midline. By stage 8 the cells arrive at the lateral sides of the anterior intestinal portal and movement ceases. The interval of this directional movement is approximately 10 hr. During migration the precardiac cells are in close association with the underlying endoderm. As migration proceeds, the cells encounter increasing amounts of fibrils in the substratum at the mesoderm-endoderm interface. Concomitant with increasing fibril formation there is an increase in fibronectin (FN) in the heart-forming region. During stage 5 FN first appears in the lateral heart-forming regions and increases in amount during the period of cell migration. By stage 7 a concentration difference of FN is apparent in the lateral regions with more FN cephalad and decreasing amounts caudad. At stages 7 and 8 large amounts of extracellular FN-associated fibrils are observed at the lateral sides of the anterior intestinal portal where the cells stop moving. The precardiac cells moving into this region are oriented perpendicular to the anterior intestinal portal and in close association with these fibrils. There is no evidence that the fibrillar meshwork forming the substratum of the precardiac mesoderm cells is physically oriented as a guide for directional movement. The correlations between FN distribution at the mesoderm-endoderm interface and directional cell movement suggest that the precardiac cells may migrate by haptotaxis, i.e., by moving along the substratum toward areas of greater adhesiveness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号