首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1532篇
  免费   190篇
  国内免费   1篇
  2021年   22篇
  2020年   13篇
  2019年   17篇
  2018年   20篇
  2017年   22篇
  2016年   31篇
  2015年   46篇
  2014年   59篇
  2013年   78篇
  2012年   80篇
  2011年   78篇
  2010年   64篇
  2009年   46篇
  2008年   75篇
  2007年   48篇
  2006年   57篇
  2005年   61篇
  2004年   49篇
  2003年   58篇
  2002年   44篇
  2001年   49篇
  2000年   38篇
  1999年   28篇
  1998年   28篇
  1997年   16篇
  1996年   25篇
  1995年   16篇
  1994年   16篇
  1992年   38篇
  1991年   37篇
  1990年   22篇
  1989年   27篇
  1988年   24篇
  1987年   25篇
  1986年   24篇
  1985年   23篇
  1984年   29篇
  1983年   26篇
  1982年   22篇
  1981年   12篇
  1980年   13篇
  1979年   18篇
  1977年   16篇
  1976年   12篇
  1975年   9篇
  1974年   14篇
  1973年   15篇
  1972年   22篇
  1970年   9篇
  1966年   13篇
排序方式: 共有1723条查询结果,搜索用时 31 毫秒
191.
Small conductance Ca(2+)-activated K(+) (SK) channels regulate membrane properties of rostral ventrolateral medulla (RVLM) projecting hypothalamic paraventricular nucleus (PVN) neurons and inhibition of SK channels increases in vitro excitability. Here, we determined in vivo the role of PVN SK channels in regulating sympathetic nerve activity (SNA) and mean arterial pressure (MAP). In anesthetized rats, bilateral PVN microinjection of SK channel blocker with peptide apamin (0, 0.125, 1.25, 3.75, 12.5, and 25 pmol) increased splanchnic SNA (SSNA), renal SNA (RSNA), MAP, and heart rate (HR) in a dose-dependent manner. Maximum increases in SSNA, RSNA, MAP, and HR elicited by apamin (12.5 pmol, n = 7) were 330 ± 40% (P < 0.01), 271 ± 40% (P < 0.01), 29 ± 4 mmHg (P < 0.01), and 34 ± 9 beats/min (P < 0.01), respectively. PVN injection of the nonpeptide SK channel blocker UCL1684 (250 pmol, n = 7) significantly increased SSNA (P < 0.05), RSNA (P < 0.05), MAP (P < 0.05), and HR (P < 0.05). Neither apamin injected outside the PVN (12.5 pmol, n = 6) nor peripheral administration of the same dose of apamin (12.5 pmol, n = 5) evoked any significant changes in the recorded variables. PVN-injected SK channel enhancer 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO, 5 nmol, n = 4) or N-cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidin]amine (CyPPA, 5 nmol, n = 6) did not significantly alter the SSNA, RSNA, MAP, and HR. Western blot and RT-PCR analysis of punched PVN tissue showed abundant expression of SK1-3 channels. We conclude that SK channels expressed in the PVN play an important role in the regulation of sympathetic outflow and cardiovascular function.  相似文献   
192.
RationaleAbdominal aortic aneurysm (AAA) is a complex disease that leads to a localized dilation of the infrarenal aorta, the rupture of which is associated with significant morbidity and mortality. Animal models of AAA can be used to study how changes in the microstructural and biomechanical behavior of aortic tissues develop as disease progresses in these animals. We chose here to investigate the effect of angiotensin II (AngII) in C57BL/6 mice as a first step towards understanding how such changes occur in the established ApoE?/? AngII infused mouse model of AAA.ObjectiveThe objective of this study was to utilize a recently developed device in our laboratory to determine how the microstructural and biomechanical properties of AngII-infused C57BL/6 wildtype mouse aorta change following 14 days of AngII infusion.MethodsC57BL/6 wildtype mice were infused with either saline or AngII for 14 day. Aortas were excised and tested using a device capable of simultaneously characterizing the biaxial mechanical response and load-dependent (unfixed, unfrozen) extracellular matrix organization of mouse aorta (using multiphoton microscopy). Peak strains and stiffness values were compared across experimental groups, and both datasets were fit to a Fung-type constitutive model. The mean mode and full width at half maximum (FWHM) of fiber histograms from two photon microscopy were quantified in order to assess the preferred fiber distribution and degree of fiber splay, respectively.ResultsThe axial stiffness of all mouse aorta was found to be an order of magnitude larger than the circumferential stiffness. The aortic diameter was found to be significantly increased for the AngII infused mice as compared to saline infused control (p=0.026). Aneurysm, defined as a percent increase in maximum diameter of 30% (defined with respect to saline control), was found in 3 of the 6 AngII infused mice. These three mice displayed adventitial collagen that lacked characteristic fiber crimp. The biomechanical response in the AngII infused mice showed significantly reduced circumferential compliance. We also noticed that the ability of the adventitial collagen fibers in AngII infused mice to disperse in reaction to circumferential loading was suppressed.ConclusionsCollagen remodeling is present following 14 days of AngII infusion in C57BL/6 mice. Aneurysmal development occurred in 50% of our AngII infused mice, and these dilatations were accompanied with adventitial collagen remodeling and decreased circumferential compliance.  相似文献   
193.
Glycogenin-1 initiates the glycogen synthesis in skeletal muscle by the autocatalytic formation of a short oligosaccharide at tyrosine 195. Glycogenin-1 catalyzes both the glucose-O-tyrosine linkage and the α1,4 glucosidic bonds linking the glucose molecules in the oligosaccharide. We recently described a patient with glycogen depletion in skeletal muscle as a result of a non-functional glycogenin-1. The patient carried a Thr83Met substitution in glycogenin-1. In this study we have investigated the importance of threonine 83 for the catalytic activity of glycogenin-1. Non-glucosylated glycogenin-1 constructs, with various amino acid substitutions in position 83 and 195, were expressed in a cell-free expression system and autoglucosylated in vitro. The autoglucosylation was analyzed by gel-shift on western blot, incorporation of radiolabeled UDP-(14)C-glucose and nano-liquid chromatography with tandem mass spectrometry (LC/MS/MS). We demonstrate that glycogenin-1 with the Thr83Met substitution is unable to form the glucose-O-tyrosine linkage at tyrosine 195 unless co-expressed with the catalytically active Tyr195Phe glycogenin-1. Our results explain the glycogen depletion in the patient expressing only Thr83Met glycogenin-1 and why heterozygous carriers without clinical symptoms show a small proportion of unglucosylated glycogenin-1.  相似文献   
194.
This study asks if the geographic boundary delineating two fish communities in western Costa Rica is congruent with a phylogeographic break in a single widespread fish species Poeciliopsis turrubarensis (Poeciliidae) that spans this area. Such congruence would suggest that a common historical event (e.g. geological or climatic) could be responsible for both patterns. It was found that there was a shared break across a region in central Costa Rica suggesting a common cause may be responsible for both the abrupt shift in fish community composition and the genetic break in P. turrubarensis.  相似文献   
195.
196.
Hyperpolarization-activated, cyclic nucleotide–sensitive (HCN) channels produce the If and Ih currents, which are critical for cardiac pacemaking and neuronal excitability, respectively. HCN channels are modulated by cyclic AMP (cAMP), which binds to a conserved cyclic nucleotide–binding domain (CNBD) in the C terminus. The unliganded CNBD has been shown to inhibit voltage-dependent gating of HCNs, and cAMP binding relieves this “autoinhibition,” causing a depolarizing shift in the voltage dependence of activation. Here we report that relief of autoinhibition can occur in the absence of cAMP in a cellular context- and isoform-dependent manner: when the HCN4 isoform was expressed in Chinese hamster ovary (CHO) cells, the basal voltage dependence was already shifted to more depolarized potentials and cAMP had no further effect on channel activation. This “pre-relief” of autoinhibition was specific both to HCN4 and to CHO cells; cAMP shifted the voltage dependence of HCN2 in CHO cells and of HCN4 in human embryonic kidney (HEK) cells. The pre-relief phenotype did not result from different concentrations of soluble intracellular factors in CHO and HEK cells, as it persisted in excised cell-free patches. Likewise, it did not arise from a failure of cAMP to bind to the CNBD of HCN4 in CHOs, as indicated by cAMP-dependent slowing of deactivation. Instead, a unique ∼300–amino acid region of the distal C terminus of HCN4 (residues 719–1012, downstream of the CNBD) was found to be necessary, but not sufficient, for the depolarized basal voltage dependence and cAMP insensitivity of HCN4 in CHO cells. Collectively, these data suggest a model in which multiple HCN4 channel domains conspire with membrane-associated intracellular factors in CHO cells to relieve autoinhibition in HCN4 channels in the absence of cAMP. These findings raise the possibility that such ligand-independent regulation could tune the activity of HCN channels and other CNBD-containing proteins in many physiological systems.  相似文献   
197.
Exaggerated cardiovascular reactivity to mental stress (MS) and cold pressor test (CPT) has been linked to increased risk of cardiovascular disease. Recent epidemiological studies identify sleep deprivation as an important risk factor for hypertension, yet the relations between sleep deprivation and cardiovascular reactivity remain equivocal. We hypothesized that 24-h total sleep deprivation (TSD) would augment cardiovascular reactivity to MS and CPT and blunt the MS-induced forearm vasodilation. Because the associations between TSD and hypertension appear to be stronger in women, a secondary aim was to probe for sex differences. Mean arterial pressure (MAP), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were recorded during MS and CPT in 28 young, healthy subjects (14 men and 14 women) after normal sleep (NS) and 24-h TSD (randomized, crossover design). Forearm vascular conductance (FVC) was recorded during MS. MAP, FVC, and MSNA (n = 10) responses to MS were not different between NS and TSD (condition × time, P > 0.05). Likewise, MAP and MSNA (n = 6) responses to CPT were not different between NS and TSD (condition × time, P > 0.05). In contrast, increases in HR during both MS and CPT were augmented after TSD (condition × time, P ≤ 0.05), and these augmented HR responses persisted during both recoveries. When analyzed for sex differences, cardiovascular reactivity to MS and CPT was not different between sexes (condition × time × sex, P > 0.05). We conclude that TSD does not significantly alter MAP, MSNA, or forearm vascular responses to MS and CPT. The augmented tachycardia responses during and after both acute stressors provide new insight regarding the emerging links among sleep deprivation, stress, and cardiovascular risk.  相似文献   
198.
Coxiella burnetii is a ubiquitous zoonotic bacterial pathogen and the cause of human acute Q fever, a disabling influenza-like illness. C. burnetii's former obligate intracellular nature significantly impeded the genetic characterization of putative virulence factors. However, recent host cell-free (axenic) growth of the organism has enabled development of shuttle vector, transposon, and inducible gene expression technologies, with targeted gene inactivation remaining an important challenge. In the present study, we describe two methods for generating targeted gene deletions in C. burnetii that exploit pUC/ColE1 ori-based suicide plasmids encoding sacB for positive selection of mutants. As proof of concept, C. burnetii dotA and dotB, encoding structural components of the type IVB secretion system (T4BSS), were selected for deletion. The first method exploited Cre-lox-mediated recombination. Two suicide plasmids carrying different antibiotic resistance markers and a loxP site were integrated into 5' and 3' flanking regions of dotA. Transformation of this strain with a third suicide plasmid encoding Cre recombinase resulted in the deletion of dotA under sucrose counterselection. The second method utilized a loop-in/loop-out strategy to delete dotA and dotB. A single suicide plasmid was first integrated into 5' or 3' target gene flanking regions. Resolution of the plasmid cointegrant by a second crossover event under sucrose counterselection resulted in gene deletion that was confirmed by PCR and Southern blot. ΔdotA and ΔdotB mutants failed to secrete T4BSS substrates and to productively infect host cells. The repertoire of C. burnetii genetic tools now allows ready fulfillment of molecular Koch's postulates for suspected virulence genes.  相似文献   
199.
Scent communication plays a central role in the mating behavior of many nonhuman mammals but has often been overlooked in the study of human mating. However, a growing body of evidence suggests that men may perceive women's high-fertility body scents (collected near ovulation) as more attractive than their low-fertility body scents. The present study provides a methodologically rigorous replication of this finding, while also examining several novel questions. Women collected samples of their natural body scent twice--once on a low-fertility day and once on a high-fertility day of the ovulatory cycle. Tests of luteinizing hormone confirmed that women experienced ovulation within two days of their high-fertility session. Men smelled each woman's high- and low-fertility scent samples and completed discrimination and preference tasks. At above-chance levels, men accurately discriminated between women's high- and low-fertility scent samples (61%) and chose women's high-fertility scent samples as more attractive than their low-fertility scent samples (56%). Men also rated each scent sample on sexiness, pleasantness, and intensity, and estimated the physical attractiveness of the woman who had provided the sample. Multilevel modeling revealed that, when high- and low-fertility scent samples were easier to discriminate from each other, high-fertility scent samples received even more favorable ratings compared with low-fertility scent samples. This study builds on a growing body of evidence indicating that men are attracted to cues of impending ovulation in women and raises the intriguing question of whether women's cycling hormones influence men's attraction and sexual approach behavior.  相似文献   
200.
The bacterial pathogen Streptococcus pneumoniae expresses one of over 90 structurally distinct polysaccharide (PS) capsule serotypes. Prior PS structural analyses of the vaccine-associated serotype 20 do not agree with reports describing the genes that mediate capsule synthesis. Furthermore, using immunized human sera-based assays, serological differences were recently noted among strains typed as serotype 20. We examined the capsule structures of two serologically dissimilar serotype 20 strains, 20α and 20β, by extensive biochemical analysis. 20α PS was composed of the previously described serotype 20 hexasaccharide repeat unit, whereas the 20β PS was composed of a novel heptasaccharide repeat unit containing an extra branching α-glucose residue. Genetic analysis of the subtypes revealed that 20α may have arisen from a 20β progenitor following loss of function mutation to the glycosyltransferase gene whaF. Conventional serotyping methods using rabbit polyclonal or mouse monoclonal antibodies were unable to distinguish the subtypes. However, genetic analysis of multiple "serotype 20" clinical isolates revealed that all strains contain the 20β genotype. We propose naming bacteria that express the previously described 20α capsule structure 20A and bacteria that express the novel 20β capsule structure 20B, a new pneumococcal serotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号