首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1497篇
  免费   188篇
  国内免费   1篇
  2022年   9篇
  2021年   23篇
  2020年   14篇
  2019年   18篇
  2018年   21篇
  2017年   22篇
  2016年   30篇
  2015年   45篇
  2014年   57篇
  2013年   77篇
  2012年   82篇
  2011年   78篇
  2010年   64篇
  2009年   43篇
  2008年   75篇
  2007年   50篇
  2006年   56篇
  2005年   60篇
  2004年   49篇
  2003年   57篇
  2002年   44篇
  2001年   49篇
  2000年   38篇
  1999年   25篇
  1998年   20篇
  1997年   14篇
  1996年   20篇
  1995年   13篇
  1994年   15篇
  1992年   36篇
  1991年   37篇
  1990年   22篇
  1989年   25篇
  1988年   23篇
  1987年   25篇
  1986年   23篇
  1985年   23篇
  1984年   29篇
  1983年   26篇
  1982年   21篇
  1981年   12篇
  1980年   13篇
  1979年   18篇
  1977年   15篇
  1976年   11篇
  1974年   14篇
  1973年   15篇
  1972年   23篇
  1970年   9篇
  1966年   13篇
排序方式: 共有1686条查询结果,搜索用时 15 毫秒
181.
Exhaled nitric oxide (NO) is altered in asthmatic subjects with exercise-induced bronchoconstriction (EIB). However, the physiological interpretation of exhaled NO is limited because of its dependence on exhalation flow and the inability to distinguish completely proximal (large airway) from peripheral (small airway and alveolar) contributions. We estimated flow-independent NO exchange parameters that partition exhaled NO into proximal and peripheral contributions at baseline, postexercise challenge, and postbronchodilator administration in steroid-naive mild-intermittent asthmatic subjects with EIB (24-43 yr old, n = 9) and healthy controls (20-31 yr old, n = 9). The mean +/- SD maximum airway wall flux and airway diffusing capacity were elevated and forced expiratory flow, midexpiratory phase (FEF(25-75)), forced expiratory volume in 1 s (FEV(1)), and FEV(1)/forced vital capacity (FVC) were reduced at baseline in subjects with EIB compared with healthy controls, whereas the steady-state alveolar concentration of NO and FVC were not different. Compared with the response of healthy controls, exercise challenge significantly reduced FEV(1) (-23 +/- 15%), FEF(25-75) (-37 +/- 18%), FVC (-12 +/- 12%), FEV(1)/FVC (-13 +/- 8%), and maximum airway wall flux (-35 +/- 11%) relative to baseline in subjects with EIB, whereas bronchodilator administration only increased FEV(1) (+20 +/- 21%), FEF(25-75) (+56 +/- 41%), and FEV(1)/FVC (+13 +/- 9%). We conclude that mild-intermittent steroid-naive asthmatic subjects with EIB have altered airway NO exchange dynamics at baseline and after exercise challenge but that these changes occur by distinct mechanisms and are not correlated with alterations in spirometry.  相似文献   
182.
The proinflammatory cytokine interleukin-6 (IL-6) may modulate the onset and progression of complications of diabetes. As this cytokine increases after exercise, and many other exercise responses are altered by prior glycemic fluctuations, we hypothesized that prior hyperglycemia might exacerbate the IL-6 response to exercise. Twenty children with type 1 diabetes (12 boys/8 girls, age 12-15 yr) performed 29 exercise studies (30-min intermittent cycling at approximately 80% peak O2 uptake). Children were divided into four groups based on highest morning glycemic reading [blood glucose (BG) < 150, BG 151-200, BG 201-300, or BG > 300 mg/dl]. All exercise studies were performed in the late morning, after hyperglycemia had been corrected and steady-state conditions (plasma glucose < 120 mg/dl, basal insulin infusion) had been maintained for > or = 90 min. Blood samples for IL-6, growth factors, and counterregulatory hormones were drawn at pre-, end-, and 30 min postexercise time points. At all time points, circulating IL-6 was lowest in BG < 150 and progressively higher in the other three groups. The exercise-induced increment also followed a similar dose-response pattern (BG < 150, 0.6 +/- 0.2 ng/ml; BG 151-200, 1.2 +/- 0.8 ng/ml; BG 201-300, 2.1 +/- 1.1 ng/ml; BG > 300, 3.2 +/- 1.4 ng/ml). Other measured variables (growth hormone, IGF-I, glucagon, epinephrine, cortisol) were not influenced by prior hyperglycemia. Recent prior hyperglycemia markedly influenced baseline and exercise-induced levels of IL-6 in a group of peripubertal children with type 1 diabetes. While exercise is widely encouraged and indeed often considered part of diabetic management, our data underscore the necessity to completely understand all adaptive mechanisms associated with physical activity, particularly in the context of the developing diabetic child.  相似文献   
183.

Background  

Codon usage has direct utility in molecular characterization of species and is also a marker for molecular evolution. To understand codon usage within the diverse phylum Nematoda, we analyzed a total of 265,494 expressed sequence tags (ESTs) from 30 nematode species. The full genomes of Caenorhabditis elegans and C. briggsae were also examined. A total of 25,871,325 codons were analyzed and a comprehensive codon usage table for all species was generated. This is the first codon usage table available for 24 of these organisms.  相似文献   
184.
We investigated environmental factors influencing cold hardiness in hatchling painted turtles (Chrysemys picta) indigenous to northeastern Indiana and the Sandhills of west-central Nebraska. In both locations, hatchlings overwinter in their natal nests. Survival of hatchlings chilled to minimum temperatures between -2.5 and -6.0 degrees C inside explanted natal nests ranged from 30 to 100%. Mortality likely was caused by freezing of the turtles that was induced by contact with ice nuclei in the surrounding soil. Susceptibility to inoculative freezing was strongly influenced by moisture content (7.5-25%, w/w) of the frozen soil in which hatchlings were cooled. When chilled in soil containing 15% moisture, turtles from Indiana resisted inoculative freezing better than hatchlings from Nebraska, but this variation was due to physical characteristics of the soils indigenous to each locale rather than genetic differences between populations. Soil in which the Indiana turtles nested contained relatively higher amounts of clay and organic matter, and bound more moisture, than the loamy sand at the Nebraska site. Soil collected from both locales contained potent ice nuclei that may constrain supercooling of the hatchlings, even in the absence of soil moisture. In addition to temperature and precipitation, local and regional variation in soils is an important determinant of overwintering survival of hatchling C. picta.  相似文献   
185.
Small conductance Ca(2+)-activated K(+) (SK) channels regulate membrane properties of rostral ventrolateral medulla (RVLM) projecting hypothalamic paraventricular nucleus (PVN) neurons and inhibition of SK channels increases in vitro excitability. Here, we determined in vivo the role of PVN SK channels in regulating sympathetic nerve activity (SNA) and mean arterial pressure (MAP). In anesthetized rats, bilateral PVN microinjection of SK channel blocker with peptide apamin (0, 0.125, 1.25, 3.75, 12.5, and 25 pmol) increased splanchnic SNA (SSNA), renal SNA (RSNA), MAP, and heart rate (HR) in a dose-dependent manner. Maximum increases in SSNA, RSNA, MAP, and HR elicited by apamin (12.5 pmol, n = 7) were 330 ± 40% (P < 0.01), 271 ± 40% (P < 0.01), 29 ± 4 mmHg (P < 0.01), and 34 ± 9 beats/min (P < 0.01), respectively. PVN injection of the nonpeptide SK channel blocker UCL1684 (250 pmol, n = 7) significantly increased SSNA (P < 0.05), RSNA (P < 0.05), MAP (P < 0.05), and HR (P < 0.05). Neither apamin injected outside the PVN (12.5 pmol, n = 6) nor peripheral administration of the same dose of apamin (12.5 pmol, n = 5) evoked any significant changes in the recorded variables. PVN-injected SK channel enhancer 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO, 5 nmol, n = 4) or N-cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidin]amine (CyPPA, 5 nmol, n = 6) did not significantly alter the SSNA, RSNA, MAP, and HR. Western blot and RT-PCR analysis of punched PVN tissue showed abundant expression of SK1-3 channels. We conclude that SK channels expressed in the PVN play an important role in the regulation of sympathetic outflow and cardiovascular function.  相似文献   
186.
RationaleAbdominal aortic aneurysm (AAA) is a complex disease that leads to a localized dilation of the infrarenal aorta, the rupture of which is associated with significant morbidity and mortality. Animal models of AAA can be used to study how changes in the microstructural and biomechanical behavior of aortic tissues develop as disease progresses in these animals. We chose here to investigate the effect of angiotensin II (AngII) in C57BL/6 mice as a first step towards understanding how such changes occur in the established ApoE?/? AngII infused mouse model of AAA.ObjectiveThe objective of this study was to utilize a recently developed device in our laboratory to determine how the microstructural and biomechanical properties of AngII-infused C57BL/6 wildtype mouse aorta change following 14 days of AngII infusion.MethodsC57BL/6 wildtype mice were infused with either saline or AngII for 14 day. Aortas were excised and tested using a device capable of simultaneously characterizing the biaxial mechanical response and load-dependent (unfixed, unfrozen) extracellular matrix organization of mouse aorta (using multiphoton microscopy). Peak strains and stiffness values were compared across experimental groups, and both datasets were fit to a Fung-type constitutive model. The mean mode and full width at half maximum (FWHM) of fiber histograms from two photon microscopy were quantified in order to assess the preferred fiber distribution and degree of fiber splay, respectively.ResultsThe axial stiffness of all mouse aorta was found to be an order of magnitude larger than the circumferential stiffness. The aortic diameter was found to be significantly increased for the AngII infused mice as compared to saline infused control (p=0.026). Aneurysm, defined as a percent increase in maximum diameter of 30% (defined with respect to saline control), was found in 3 of the 6 AngII infused mice. These three mice displayed adventitial collagen that lacked characteristic fiber crimp. The biomechanical response in the AngII infused mice showed significantly reduced circumferential compliance. We also noticed that the ability of the adventitial collagen fibers in AngII infused mice to disperse in reaction to circumferential loading was suppressed.ConclusionsCollagen remodeling is present following 14 days of AngII infusion in C57BL/6 mice. Aneurysmal development occurred in 50% of our AngII infused mice, and these dilatations were accompanied with adventitial collagen remodeling and decreased circumferential compliance.  相似文献   
187.
Glycogenin-1 initiates the glycogen synthesis in skeletal muscle by the autocatalytic formation of a short oligosaccharide at tyrosine 195. Glycogenin-1 catalyzes both the glucose-O-tyrosine linkage and the α1,4 glucosidic bonds linking the glucose molecules in the oligosaccharide. We recently described a patient with glycogen depletion in skeletal muscle as a result of a non-functional glycogenin-1. The patient carried a Thr83Met substitution in glycogenin-1. In this study we have investigated the importance of threonine 83 for the catalytic activity of glycogenin-1. Non-glucosylated glycogenin-1 constructs, with various amino acid substitutions in position 83 and 195, were expressed in a cell-free expression system and autoglucosylated in vitro. The autoglucosylation was analyzed by gel-shift on western blot, incorporation of radiolabeled UDP-(14)C-glucose and nano-liquid chromatography with tandem mass spectrometry (LC/MS/MS). We demonstrate that glycogenin-1 with the Thr83Met substitution is unable to form the glucose-O-tyrosine linkage at tyrosine 195 unless co-expressed with the catalytically active Tyr195Phe glycogenin-1. Our results explain the glycogen depletion in the patient expressing only Thr83Met glycogenin-1 and why heterozygous carriers without clinical symptoms show a small proportion of unglucosylated glycogenin-1.  相似文献   
188.
This study asks if the geographic boundary delineating two fish communities in western Costa Rica is congruent with a phylogeographic break in a single widespread fish species Poeciliopsis turrubarensis (Poeciliidae) that spans this area. Such congruence would suggest that a common historical event (e.g. geological or climatic) could be responsible for both patterns. It was found that there was a shared break across a region in central Costa Rica suggesting a common cause may be responsible for both the abrupt shift in fish community composition and the genetic break in P. turrubarensis.  相似文献   
189.
190.
Hyperpolarization-activated, cyclic nucleotide–sensitive (HCN) channels produce the If and Ih currents, which are critical for cardiac pacemaking and neuronal excitability, respectively. HCN channels are modulated by cyclic AMP (cAMP), which binds to a conserved cyclic nucleotide–binding domain (CNBD) in the C terminus. The unliganded CNBD has been shown to inhibit voltage-dependent gating of HCNs, and cAMP binding relieves this “autoinhibition,” causing a depolarizing shift in the voltage dependence of activation. Here we report that relief of autoinhibition can occur in the absence of cAMP in a cellular context- and isoform-dependent manner: when the HCN4 isoform was expressed in Chinese hamster ovary (CHO) cells, the basal voltage dependence was already shifted to more depolarized potentials and cAMP had no further effect on channel activation. This “pre-relief” of autoinhibition was specific both to HCN4 and to CHO cells; cAMP shifted the voltage dependence of HCN2 in CHO cells and of HCN4 in human embryonic kidney (HEK) cells. The pre-relief phenotype did not result from different concentrations of soluble intracellular factors in CHO and HEK cells, as it persisted in excised cell-free patches. Likewise, it did not arise from a failure of cAMP to bind to the CNBD of HCN4 in CHOs, as indicated by cAMP-dependent slowing of deactivation. Instead, a unique ∼300–amino acid region of the distal C terminus of HCN4 (residues 719–1012, downstream of the CNBD) was found to be necessary, but not sufficient, for the depolarized basal voltage dependence and cAMP insensitivity of HCN4 in CHO cells. Collectively, these data suggest a model in which multiple HCN4 channel domains conspire with membrane-associated intracellular factors in CHO cells to relieve autoinhibition in HCN4 channels in the absence of cAMP. These findings raise the possibility that such ligand-independent regulation could tune the activity of HCN channels and other CNBD-containing proteins in many physiological systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号