首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1222篇
  免费   67篇
  1289篇
  2021年   12篇
  2020年   8篇
  2019年   6篇
  2018年   19篇
  2017年   12篇
  2016年   16篇
  2015年   40篇
  2014年   40篇
  2013年   49篇
  2012年   74篇
  2011年   72篇
  2010年   44篇
  2009年   30篇
  2008年   56篇
  2007年   39篇
  2006年   45篇
  2005年   42篇
  2004年   52篇
  2003年   38篇
  2002年   41篇
  2001年   30篇
  2000年   39篇
  1999年   28篇
  1998年   17篇
  1997年   18篇
  1996年   20篇
  1995年   12篇
  1994年   11篇
  1993年   11篇
  1992年   28篇
  1991年   14篇
  1990年   23篇
  1989年   30篇
  1988年   32篇
  1987年   24篇
  1986年   22篇
  1985年   26篇
  1984年   21篇
  1983年   14篇
  1982年   13篇
  1981年   14篇
  1980年   6篇
  1979年   15篇
  1978年   14篇
  1975年   8篇
  1974年   8篇
  1973年   10篇
  1972年   7篇
  1971年   5篇
  1970年   11篇
排序方式: 共有1289条查询结果,搜索用时 0 毫秒
31.
32.
Purpose  We have previously demonstrated an association of the human leukocyte antigen (HLA), HLA-A2 allele with ovarian and prostate cancer mortality as well as a segregation of the ancestral HLA haplotype (AHH) 62.1 [(A2) B15 Cw3 DRB1*04] in patients with stage III–IV serous ovarian cancer. The objective of the present study was to determine the role of the HLA phenotype on the prognosis in stage III–IV malignant melanoma patients. Patients and methods  A cohort of metastatic malignant melanoma patients (n = 91), in stage III (n = 26) or IV (n = 65) were analysed for HLA-A, -B, -Cw and -DRB1 types by PCR/sequence-specific primer method. The frequencies of HLA alleles in the patients were compared to that of healthy Swedish bone marrow donors. The effect of HLA types on prognosis was defined by Kaplan–Meier and Cox analysis. Results  The presence of the AHH 62.1 in clinical stage IV patients was significantly and independently associated with the worst survival rate recorded from the appearance of metastasis (HR = 2.14; CI = 1.02–4.4; P = 0.04). In contrast, the period from the primary diagnosis to metastasis was the longest in patients with this haplotype (HR = 0.40; CI = 0.17–0.90; P = 0.02). Conclusions  Melanoma patients in our cohort with 62.1 AHH which is associated with autoimmune diseases have an initial strong anti-tumour control with longer metastasis-free period. These patients have rapid progression after the appearance of metastasis, responding poorly to chemo- or/and immunotherapy. This apparently paradoxical clinical process could be due to the interplay between tumour clones escape and immune surveillance ending up with a rapid disease progression. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
33.
The major histocompatibility complex (MHC) genes are extremely polymorphic and this variation is assumed to be maintained by balancing selection. Cyclic interactions between pathogens and their hosts could generate such selection, and specific MHC alleles or heterozygosity at certain MHC loci have been shown to confer resistance against particular pathogens. Here we compare the temporal variation in allele frequencies of 23 MHC class I alleles with that of 23 neutral microsatellite markers in adult great reed warblers (a passerine bird) in nine successive cohorts. Overall, the MHC alleles showed a significantly higher variation in allele frequencies between cohorts than the microsatellite alleles, using a multi-variate genetic analysis (amova). The frequency of two specific MHC alleles, A3e (P = 0.046) and B4b (P = 0.0018), varied more between cohorts than expected from random, whereas none of the microsatellite alleles showed fluctuations exceeding the expectation from stochastic variation. These results imply that the variation in MHC allele frequencies between cohorts is not a result of demographic events, but rather an effect of selection favouring different MHC alleles in different years.  相似文献   
34.
Conclusion Primary cultures from neonatal rat brain consist mainly of astroglial cells, immunohistochemically identified by GFAp and S-100. As other cells than astrocytes may survice in the culture, specific markers for the expected cells were used. Cells with phagocytic properties, endothelial-like cells, oligoblasts, ependymal cells and mesenchymal cells were identified. No neurons have so far been detected.The astroglial cells have a high-affinity uptake for glutamate, aspartate GABA, taurine and hypotaurine, while there is probably a non-saturable uptake of norepinephrine, dopamine and 5-HT. The enzymes MAO, COMT, GABA-T and GS have been demonstrated. It thus seems that astrocytes take part in the inactivation of neurotransmitters, although amino acids and monoamines are taken up with different mechanisms.The presence of receptors for different neurotransmitters and neuromodulators has been demonstrated on astrocytes.Astroglial-enriched cultures from various brain regions have shown that the cells express specialized functional properties concerning neurotransmitter uptake, metabolizing enzymes and receptor density.Astroglial cell differentiation in culture is shortly reviewed and one possibility to affect this maturation by co-cultivation with neuronal containing cultures is point out.  相似文献   
35.
Heterozygosity-fitness correlations (HFCs) at noncoding genetic markers are commonly assumed to reflect fitness effects of heterozygosity at genomewide distributed genes in partially inbred populations. However, in populations with much linkage disequilibrium (LD), HFCs may arise also as a consequence of selection on fitness loci in the local chromosomal vicinity of the markers. Recent data suggest that relatively high levels of LD may prevail in many ecological situations. Consequently, LD may be an important factor, together with partial inbreeding, in causing HFCs in natural populations. In the present study, we evaluate whether LD can generate HFCs in a small and newly founded population of great reed warblers (Acrocephalus arundinaceus). For this purpose dyads of full siblings of which only one individual survived to adult age (i.e., returned to breed at the study area) were scored at 19 microsatellite loci, and at a gene region of hypothesized importance for survival, the major histocompatibility complex (MHC). By examining siblings, we controlled for variation in the inbreeding coefficient and thus excluded genome-wide fitness effects in our analyses. We found that recruited individuals had significantly higher multilocus heterozygosity (MLH), and mean d2 (a microsatellite-specific variable), than their nonrecruited siblings. There was a tendency for the survivors to have a more diverse MHC than the nonsurvivors. Single-locus analyses showed that the strength of the genotype-survival association was especially pronounced at four microsatellite loci. By using genotype data from the entire breeding population, we detected significant LD between five of 162 pairs of microsatellite loci after accounting for multiple tests. Our present finding of a significant within-family multilocus heterozygosity-survival association in a nonequilibrium population supports the view that LD generates HFCs in natural populations.  相似文献   
36.
37.
Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.The introduction of dwarfing genes to increase culm sturdiness of cereal crops was crucial for the first Green Revolution (Hedden, 2003). The culms of tall cereal crops were not strong enough to support the heavy spikes of high-yielding cultivars, especially under high-nitrogen conditions. As a result, plants fell over, a process known as lodging. This caused losses in yield and grain-quality issues attributable to fungal infections, mycotoxin contamination, and preharvest germination (Rajkumara, 2008). Today, a second Green Revolution is on its way, to revolutionize the agricultural sector and to ensure food production for a growing world population. Concurrently, global climate change is expected to cause more frequent occurrences of extreme weather conditions, including thunderstorms with torrential rain and strong winds, thus promoting cereal culm breakage (Porter and Semenov, 2005; National Climate Assessment Development Advisory Committee, 2013). Accordingly, plant architectures that resist lodging remain a major crop-improvement goal and identification of genes that regulate culm length is required to enhance the genetic toolbox in order to facilitate efficient marker-assisted breeding. The mutations and the corresponding genes that enabled the Green Revolution in wheat (Triticum aestivum) and rice (Oryza sativa) have been identified (Hedden, 2003). They all relate to gibberellin metabolism and signal transduction. It is now known that other plant hormones such as brassinosteroids are also involved in the regulation of plant height. Knowledge of the molecular mechanisms underlying the effects of the two hormones on cell elongation and division has mainly come from studies in Arabidopsis (Arabidopsis thaliana; Bai et al., 2012). Mutant-based breeding strategies to fine-tune brassinosteroid metabolism and signaling pathways could improve lodging behavior in modern crops (Vriet et al., 2012) such as barley (Hordeum vulgare), which is the fourth most abundant cereal in both area and tonnage harvested (http://faostat.fao.org).A short-culm phenotype in crops is often accompanied by other phenotypic changes. Depending on the penetrance of such pleiotropic characters, but also the parental background and different scientific traditions and expertise, short-culmed barley mutants were historically divided into groups, such as brachytic (brh), breviaristatum (ari), dense spike (dsp), erectoides (ert), semibrachytic (uzu), semidwarf (sdw), or slender dwarf (sld; Franckowiak and Lundqvist, 2012). Subsequent mutant characterization was limited to intragroup screens and very few allelism tests between mutants from different groups have been reported (Franckowiak and Lundqvist, 2012). Although the total number of short-culm barley mutants exceeds 500 (Franckowiak and Lundqvist, 2012), very few have been characterized at the DNA level (Helliwell et al., 2001; Jia et al., 2009; Chandler and Harding, 2013; Houston et al., 2013). One of the first identified haplotypes was uzu barley (Chono et al., 2003). The Uzu1 gene encodes the brassinosteroid hormone receptor and is orthologous to the BRASSINOSTEROID-INSENSITIVE1 (BRI1) gene of Arabidopsis, a crucial promoter of plant growth (Li and Chory, 1997). The uzu1.a allele has been used in East Asia for over a century and is presently distributed in winter barley cultivars in Japan, the Korean peninsula, and China (Saisho et al., 2004). Its agronomic importance comes from the short and sturdy culm that provides lodging resistance, and an upright plant architecture that tolerates dense planting.Today, more than 50 different brassinosteroids have been identified in plants (Bajguz and Tretyn, 2003). Most are intermediates of the complex biosynthetic pathway (Shimada et al., 2001). Approximately nine genes code for the enzymes that participate in the biosynthetic pathway from episterol to brassinolide (Supplemental Fig. S1). Brassinosteroid deficiency is caused by down-regulation of these genes, but it can also be associated with brassinosteroid signaling. The first protein in the signaling network is the brassinosteroid receptor encoded by BRI1 (Li and Chory, 1997; Kim and Wang, 2010). In this work, we show how to visually identify brassinosteroid-mutant barley plants and we describe more than 20 relevant mutations in four genes of the brassinosteroid biosynthesis and signaling pathways that can be used in marker-assisted breeding strategies.  相似文献   
38.
Summary Human arterial smooth muscle cells (hASMC) from explants of the inner media of uterine arteries were studied in secondary culture. We had previously found that these cells depend on exogenous platelet-derived growth factor (PDGF) for proliferation in vitro. Deprivation of the serum mitogen(s) by culture in plasma-derived serum or bovine serum albumin (BSA) caused a true growth arrest that was reversible upon reexposure to the mitogen(s). When added to serum-containing medium, heparin caused a reversible growth arrest which could be competed for by increasing concentrations of serum. In the current study we used a set of smooth muscle-specific actin and myosin, antibodies to study the expression of contractile proteins in stress fibers under indirect immunofluorescence on hASMC in culture. Even in sparse culture, grwoth-arrested hASMC expressed stress fibers containing these actin and myosin epitopes. This was true irrespective of whether growth arrest was achieved by culture in media containing only BSA or a combination of heparin and whole blood serum. hASMC proliferating in whole blood serum in sparse culture did not express such strees fibers, as judged by immunofluorescent staining. This was true also for cells that were restimulated to proliferate in serum after a growth arrest. Utilizing a monoclonal antibody against a nuclear antigen expressed in proliferating human cells, we were able to demonstrate an inverse relationship between the expression of this antigen and the SMC-specific contractile proteins, respectively. Under these culture conditions, the reversible transition between defifferentiated and differentiated hASMC was almost complete and terminated about 1 wk after the change in culture condition. We conclude that hASMC in vitro respond, to exogenous PDGF by proliferation and dedifferetiation as a single population of cells. We also conclude that this modulation is reversible, because the cells become uniformly quiescent and differentiated when the mitogenic stimulus is blocked or removed. This study was supported by grants from the Swedish Medical Research Council (Project no. 4531 and 6816), the Swedish Association against Heart and Chest Diseases, the King Gustaf V and Queen Victoria Foundation, the National Institutes of Health, Bethesda, MD (grant HL 29873) and the Swedish National Board for Laboratory Animals.  相似文献   
39.
Summary A cDNA for the human catalytic subunit (C) of cAMP-dependent protein kinase (PKA) has been cloned from a testis cDNA library. In the present study, we have determined the chromosomal localization of this gene using a cDNA for C as a probe. Southern blot analysis of genomic DNA from human/mouse cell hybrids revealed that the presence or absence of a 20-kbXbaI fragment, which hybridized with the C probe, was concordant with the presence of human chromosome 1.In situ hybridization to metaphase chromosome confirmed the somatic cell hybrid data and regionally mapped the C gene of PKA to the p36 band on chromosome 1.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号