首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6334篇
  免费   531篇
  国内免费   5篇
  2023年   26篇
  2022年   63篇
  2021年   100篇
  2020年   73篇
  2019年   82篇
  2018年   103篇
  2017年   126篇
  2016年   163篇
  2015年   282篇
  2014年   389篇
  2013年   430篇
  2012年   547篇
  2011年   484篇
  2010年   322篇
  2009年   283篇
  2008年   336篇
  2007年   368篇
  2006年   345篇
  2005年   325篇
  2004年   300篇
  2003年   292篇
  2002年   273篇
  2001年   64篇
  2000年   52篇
  1999年   59篇
  1998年   75篇
  1997年   56篇
  1996年   57篇
  1995年   47篇
  1994年   58篇
  1993年   48篇
  1992年   68篇
  1991年   40篇
  1990年   46篇
  1989年   41篇
  1988年   29篇
  1987年   33篇
  1986年   20篇
  1985年   27篇
  1984年   39篇
  1983年   31篇
  1982年   28篇
  1981年   33篇
  1980年   17篇
  1979年   14篇
  1978年   15篇
  1976年   17篇
  1975年   13篇
  1974年   23篇
  1972年   18篇
排序方式: 共有6870条查询结果,搜索用时 15 毫秒
131.
Batch cultures of aquatic bacteria and dissolved organic matter were used to examine the impact of carbon source concentration on bacterial growth, biomass, growth efficiency, and community composition. An aged concentrate of dissolved organic matter from a humic lake was diluted with organic compound-free artificial lake water to obtain concentrations of dissolved organic carbon (DOC) ranging from 0.04 to 2.53 mM. The bacterial biomass produced in the cultures increased linearly with the DOC concentration, indicating that bacterial biomass production was limited by the supply of carbon. The bacterial growth rate in the exponential growth phase exhibited a hyperbolic response to the DOC concentration, suggesting that the maximum growth rate was constrained by the substrate concentration at low DOC concentrations. Likewise, the bacterial growth efficiency calculated from the production of biomass and CO(2) increased asymptotically from 0.4 to 10.4% with increasing DOC concentration. The compositions of the microbial communities that emerged in the cultures were assessed by separation of PCR-amplified 16S rRNA fragments by denaturing gradient gel electrophoresis. Nonmetric multidimensional scaling of the gel profiles showed that there was a gradual change in the community composition along the DOC gradient; members of the beta subclass of the class Proteobacteria and members of the Cytophaga-Flavobacterium group were well represented at all concentrations, whereas members of the alpha subclass of the Proteobacteria were found exclusively at the lowest carbon concentration. The shift in community composition along the DOC gradient was similar to the patterns of growth efficiency and growth rate. The results suggest that the bacterial growth efficiencies, the rates of bacterial growth, and the compositions of bacterial communities are not constrained by substrate concentrations in most natural waters, with the possible exception of the most oligotrophic environments.  相似文献   
132.
133.
Ribosomal protein S6 kinase (S6K) is activated by an array of mitogenic stimuli and is a key player in the regulation of cell growth. The activation process of S6 kinase involves a complex and sequential series of multiple Ser/Thr phosphorylations and is mainly mediated via phosphatidylinositol 3-kinase (PI3K)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and mTor-dependent pathways. Upstream regulators of S6K, such as PDK1 and protein kinase B (PKB/Akt), are recruited to the membrane via their pleckstrin homology (PH) or protein-protein interaction domains. However, the mechanism of integration of S6K into a multi-enzyme complex around activated receptor tyrosine kinases is not clear. In the present study, we describe a specific interaction between S6K with receptor tyrosine kinases, such as platelet-derived growth factor receptor (PDGFR). The interaction with PDGFR is mediated via the kinase or the kinase extension domain of S6K. Complex formation is inducible by growth factors and leads to S6K tyrosine phosphorylation. Using PDGFR mutants, we have shown that the phosphorylation is exerted via a PDGFR-src pathway. Furthermore, src kinase phosphorylates and coimmunoprecipitates with S6K in vivo. Inhibitors towards tyrosine kinases, such as genistein and PP1, or src-specific SU6656, but not PI3K and mTor inhibitors, lead to a reduction in tyrosine phosphorylation of S6K. In addition, we mapped the sites of tyrosine phosphorylation in S6K1 and S6K2 to Y39 and Y45, respectively. Mutational and immunofluorescent analysis indicated that phosphorylation of S6Ks at these sites does not affect their activity or subcellular localization. Our data indicate that S6 kinase is recruited into a complex with RTKs and src and becomes phosphorylated on tyrosine/s in response to PDGF or serum.  相似文献   
134.
135.
Deciduous forests may respond differently from coniferous forests to the anthropogenic deposition of nitrogen (N). Since fungi, especially ectomycorrhizal (EM) fungi, are known to be negatively affected by N deposition, the effects of N deposition on the soil microbial community, total fungal biomass and mycelial growth of EM fungi were studied in oak-dominated deciduous forests along a nitrogen deposition gradient in southern Sweden. In-growth mesh bags were used to estimate the production of mycelia by EM fungi in 19 oak stands in the N deposition gradient, and the results were compared with nitrate leaching data obtained previously. Soil samples from 154 oak forest sites were analysed regarding the content of phospholipid fatty acids (PLFAs). Thirty PLFAs associated with microbes were analysed and the PLFA 18:2ω6,9 was used as an indicator to estimate the total fungal biomass. Higher N deposition (20 kg N ha−1 y−1 compared with 10 kg N ha−1 y−1) tended to reduce EM mycelial growth. The total soil fungal biomass was not affected by N deposition or soil pH, while the PLFA 16:1ω5, a biomarker for arbuscular mycorrhizal (AM) fungi, was negatively affected by N deposition, but also positively correlated to soil pH. Other PLFAs positively affected by soil pH were, e.g., i14:0, a15:0, 16:1ω9, a17:0 and 18:1ω7, while some were negatively affected by pH, such as i15:0, 16:1ω7t, 10Me17:0 and cy19:0. In addition, N deposition had an effect on the PLFAs 16:1ω7c and 16:1ω9 (negatively) and cy19:0 (positively). The production of EM mycelia is probably more sensitive to N deposition than total fungal biomass according to the fungal biomarker PLFA 18:2ω6,9. Low amounts of EM mycelia covaried with increased nitrate leaching, suggesting that EM mycelia possibly play an important role in forest soil N retention at increased N input.  相似文献   
136.
Cell suspensions of Bacteroides fragilis were allowed to ferment glucose and lactate labeled with (14)C in different positions. The fermentation products, propionate and acetate, were isolated, and the distribution of radioactivity was determined. An analysis of key enzymes of possible pathways was also made. The results of the labeling experiments showed that: (i) B. fragilis ferments glucose via the Embden-Meyerhof pathway; and (ii) there was a randomization of carbons 1, 2, and 6 of glucose during conversion to propionate, which is in accordance with propionate formation via fumarate and succinate. The enzymes 6-phosphofrucktokinase (pyrophosphate-dependent), fructose-1,6-diphosphate aldolase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, and methylmalonyl-coenzyme A mutase could be demonstrated in cell extracts. Their presence supported the labeling results and suggested that propionate is formed from succinate via succinyl-, methylmalonyl-, and propionyl-coenzyme A. From the results it also is clear that CO(2) is necessary for growth because it is needed for the formation of C4 acids. There was also a randomization of carbons 1, 2, and 6 of glucose during conversion to acetate, which indicated that pyruvate kinase played a minor role in pyruvate formation from phosphoenolpyruvate. Phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase, and malic enzyme (nicotinamide adenine dinucleotide phosphate-dependent) were present in cell extracts of B. fragilis, and the results of the labeling experiments agreed with pyruvate synthesis via oxaloacetate and malate if these acids are in equilibrium with fumarate. The conversion of [2-(14)C]- and [3-(14)C]lactate to acetate was not associated with a randomization of radioactivity.  相似文献   
137.

Background  

The adaptive significance of female polyandry is currently under considerable debate. In non-resource based mating systems, indirect, i.e. genetic benefits have been proposed to be responsible for the fitness gain from polyandry. We studied the benefits of polyandry in the Arctic charr (Salvelinus alpinus) using an experimental design in which the material investments by the sires and maternal environmental effects were controlled.  相似文献   
138.
Toll-like receptors (TLRs) recognize molecular patterns preferentially expressed by pathogens. In endosomes, TLR9 is activated by unmethylated bacterial DNA, resulting in proinflammatory cytokine secretion via the adaptor protein MyD88. We demonstrate that CpG oligonucleotides activate a TLR9-independent pathway initiated by two Src family kinases, Hck and Lyn, which trigger a tyrosine phosphorylation–mediated signaling cascade. This cascade induces actin cytoskeleton reorganization, resulting in cell spreading, adhesion, and motility. CpG-induced actin polymerization originates at the plasma membrane, rather than in endosomes. Chloroquine, an inhibitor of CpG-triggered cytokine secretion, blocked TLR9/MyD88-dependent cytokine secretion as expected but failed to inhibit CpG-induced Src family kinase activation and its dependent cellular responses. Knock down of Src family kinase expression or the use of specific kinase inhibitors blocked MyD88-dependent signaling and cytokine secretion, providing evidence that tyrosine phosphorylation is both CpG induced and an upstream requirement for the engagement of TLR9. The Src family pathway intersects the TLR9–MyD88 pathway by promoting the tyrosine phosphorylation of TLR9 and the recruitment of Syk to this receptor.  相似文献   
139.
This paper presents a general, process-based mass balance model (CoastMab) for total phosphorus (TP) in defined coastal areas (at the ecosystem scale). The model is based on ordinary differential equations and calculates inflow, outflow and internal fluxes on a monthly basis. It consists of four compartments: surface water, deep water, erosion/transportation areas for fine sediments and accumulation areas for fine sediments. The separation between surface water and deep water is not done based on water temperature, but on sedimentological criteria instead (from the theoretical wave base). There are algorithms for all major internal TP fluxes (sedimentation, resuspension, diffusion, mixing and burial). Validations were performed using data from 21 different Baltic coastal areas. The results show that the model predicts monthly TP in water and chlorophyll a very well (generally within the uncertainty bands of the empirical data). The model has also been put through sensitivity tests, which show that the most important factor regulating the predictions of the model is generally the TP concentration in the sea beyond the coast. The model is simple to apply, since all driving variables may be accessed from maps or monitoring programs. The driving variables include coastal area, section area (between the defined coastal area and the adjacent sea), mean and maximum depths, latitude (used to predict water temperatures, stratification and mixing), salinity and TP concentration in the sea. Many of the model structures are general and could be used for areas other than those included in this study, e.g., for open coasts, estuaries or tidal coasts, as well as for other substances than phosphorus.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号