首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6331篇
  免费   528篇
  国内免费   5篇
  6864篇
  2023年   26篇
  2022年   64篇
  2021年   100篇
  2020年   73篇
  2019年   82篇
  2018年   103篇
  2017年   126篇
  2016年   162篇
  2015年   282篇
  2014年   391篇
  2013年   428篇
  2012年   547篇
  2011年   485篇
  2010年   321篇
  2009年   280篇
  2008年   334篇
  2007年   367篇
  2006年   345篇
  2005年   326篇
  2004年   300篇
  2003年   293篇
  2002年   274篇
  2001年   65篇
  2000年   52篇
  1999年   59篇
  1998年   75篇
  1997年   56篇
  1996年   57篇
  1995年   45篇
  1994年   58篇
  1993年   48篇
  1992年   68篇
  1991年   40篇
  1990年   45篇
  1989年   41篇
  1988年   28篇
  1987年   33篇
  1986年   20篇
  1985年   27篇
  1984年   39篇
  1983年   31篇
  1982年   28篇
  1981年   33篇
  1980年   17篇
  1979年   14篇
  1978年   15篇
  1976年   17篇
  1975年   13篇
  1974年   23篇
  1972年   18篇
排序方式: 共有6864条查询结果,搜索用时 15 毫秒
71.
Thyroid hormones are essential for vertebrate development. There is a characteristic rise in thyroid hormone levels in blood during critical periods of thyroid hormone-regulated development. Thyroid hormones are lipophilic compounds, which readily partition from an aqueous environment into a lipid environment. Thyroid hormone distributor proteins are required to ensure adequate distribution of thyroid hormones, throughout the aqueous environment of the blood, and to counteract the avid partitioning of thyroid hormones into the lipid environment of cell membranes. In human blood, these proteins are albumin, transthyretin and thyroxine-binding globulin. We analyzed the developmental profile of thyroid hormone distributor proteins in serum from a representative of each order of marsupials (M. eugenii; S.crassicaudata), a reptile (C. porosus), in two species of salmonoid fishes (S. salar; O. tshawytsch), and throughout a calendar year for sea bream (S. aurata). We demonstrated that during development, these animals have a thyroid hormone distributor protein present in their blood which is not present in the adult blood. At least in mammals, this additional protein has higher affinity for thyroid hormones than the thyroid hormone distributor proteins in the blood of the adult. In fish, reptile and polyprotodont marsupial, this protein was transthyretin. In a diprotodont marsupial, it was thyroxine-binding globulin. We propose an hypothesis that an augmented thyroid hormone distributor protein network contributes to the rise in total thyroid hormone levels in the blood during development.  相似文献   
72.
Exponential phase cells of Pseudomonas putida KT2442 rapidly lost viability when incubated at 0°C without entering a viable but non-culturable state. The majority of dead cells retained their cellular integrity and contained DNA. However, their cellular rRNA content was substantially reduced. By employing a luciferase-marked derivative of P. putida KT2442 in combination with a highly sensitive low-light imaging system, live and dead cells could be distinguished.  相似文献   
73.
74.
Pan J  Han J  Borchers CH  Konermann L 《Biochemistry》2012,51(17):3694-3703
Aβ peptides can assemble into amyloid fibrils, which represent one of the hallmarks of Alzheimer's disease. Recent studies, however, have focused on the behavior of small soluble Aβ oligomers that possess a much greater neurotoxicity than mature fibrils. The structural characterization of these oligomers remains difficult because of their highly dynamic and polymorphic nature. This work explores the behavior of Aβ(1-40) in a slightly basic solution (pH 9.3) at a low salt concentration (10 mM ammonium acetate). These conditions lead to the formation of small oligomers, without any signs of fibrillation for several hours. The structure and dynamics of these oligomers were characterized by circular dichroism spectroscopy, size exclusion chromatography, and millisecond time-resolved hydrogen exchange mass spectrometry (MS). Our results reveal rapid interconversion between Aβ(1-40) oligomers and monomers. The mole fraction of monomeric molecules is on the order of 40%. Oligomers consist of ~4 Aβ(1-40) molecules on average, and the resulting assemblies have a predominantly β-sheet secondary structure. Hydrogen exchange proceeds in the EX1 regime. This feature allows the application of conformer-specific top-down MS. Electron capture dissociation is used for interrogating the deuteration behavior of the Aβ(1-40) oligomers. This approach provides a spatial resolution of ~2 residues. The backbone amide deuteration pattern uncovered in this way is consistent with a β-turn-β motif for L17-M35. The N-terminus is involved in hydrogen bonding, as well, whereas protection gradually tapers off for C-terminal residues 35-40. Our data are consistent with earlier proposals, according to which Aβ(1-40) oligomers adopt a β-barrel structure. In general terms, this study demonstrates how top-down MS with precursor ion selection can be employed for structural studies of specific protein conformers within a heterogeneous mix.  相似文献   
75.
Bisdioxopiperazine anti-cancer agents are catalytic inhibitors of topoisomerase II which by unknown means lock the enzyme in a closed clamp form and inhibit its ATPase activity. In order to demarcate a putative pharmacophore, we here describe a novel Tyr165Ser mutation in the enzyme's Walker A ATP binding site leading to specific bisdioxopiperazine resistance when transformed into a temperature-conditional yeast system. The Tyr165Ser mutation differed from a previously described Arg162Gln by being heterozygous and by purified Tyr165Ser enzyme being drug-resistant in a kinetoplast DNA decatenation enzymatic assay. This suggested dominant nature of Tyr165Ser was supported by co-transformation studies in yeast of plasmids carrying wild type and mutant genes. These results enable a model of the bisdioxopiperazine pharmacophore using the proposed asymmetric ATP hydrolysis of the enzyme.  相似文献   
76.
Desulfocapsa sulfexigens SB164P1 (DSM 10523) belongs to the deltaproteobacterial family Desulfobulbaceae and is one of two validly described members of its genus. This strain was selected for genome sequencing, because it is the first marine bacterium reported to thrive on the disproportionation of elemental sulfur, a process with a unresolved enzymatic pathway in which elemental sulfur serves both as electron donor and electron acceptor. Furthermore, in contrast to its phylogenetically closest relatives, which are dissimilatory sulfate-reducers, D. sulfexigens is unable to grow by sulfate reduction and appears metabolically specialized in growing by disproportionating elemental sulfur, sulfite or thiosulfate with CO2 as the sole carbon source. The genome of D. sulfexigens contains the set of genes that is required for nitrogen fixation. In an acetylene assay it could be shown that the strain reduces acetylene to ethylene, which is indicative for N-fixation. The circular chromosome of D. sulfexigens SB164P1 comprises 3,986,761 bp and harbors 3,551 protein-coding genes of which 78% have a predicted function based on auto-annotation. The chromosome furthermore encodes 46 tRNA genes and 3 rRNA operons.  相似文献   
77.
In metabolomics studies, liquid chromatography mass spectrometry (LC–MS) provides comprehensive information on biological samples. However, extraction of few relevant metabolites from this large and complex data is cumbersome. To resolve this issue, we have employed sparse principal component analysis (SPCA) to capture the underlying patterns and select relevant metabolites from LC–MS plasma profiles. The study involves a small pilot cohort with 270 subjects where each subject’s time since last meal (TSLM) has been recorded prior to plasma sampling. Our results have demonstrated that both PCA and SPCA can capture the TSLM patterns. Nevertheless, SPCA provides more easily interpretable loadings in terms of selection of relevant metabolites, which are identified as amino acids and lyso-lipids. This study demonstrates the utility of SPCA as a pattern recognition and variable selection tool in metabolomics. Furthermore, amino acids and lyso-lipids are determined as dominating compounds in response to TSLM.  相似文献   
78.
Studies on expression and function of key developmental control genes suggest that the embryonic vertebrate brain has a tripartite ground plan that consists of a forebrain/midbrain, a hindbrain and an intervening midbrain/hindbrain boundary region, which are characterized by the specific expression of the Otx, Hox and Pax2/5/8 genes, respectively. We show that the embryonic brain of the fruitfly Drosophila melanogaster expresses all three sets of homologous genes in a similar tripartite pattern. Thus, a Pax2/5/8 expression domain is located at the interface of brain-specific otd/Otx2 and unpg/Gbx2 expression domains anterior to Hox expression regions. We identify this territory as the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain. Mutational inactivation of otd/Otx2 and unpg/Gbx2 result in the loss or misplacement of the brain-specific expression domains of Pax2/5/8 and Hox genes. In addition, otd/Otx2 and unpg/Gbx2 appear to negatively regulate each other at the interface of their brain-specific expression domains. Our studies demonstrate that the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain displays developmental genetic features similar to those observed for the midbrain/hindbrain boundary region in vertebrate brain development. This suggests that a tripartite organization of the embryonic brain was already established in the last common urbilaterian ancestor of protostomes and deuterostomes.  相似文献   
79.
Long-chain n-3 fatty acids (n-3 LCPUFA) improve blood pressure (BP) and lipid profile in adults and improve insulin sensitivity in rodents. We have previously shown that n-3 LCPUFA reduces BP and plasma triacylglycerol (TAG) in infants. Few studies have found effects on glucose homeostasis in humans. We explored possible effect modification by FADS, PPARG2, and COX2 genotypes to support potential effects of n-3 LCPUFA on metabolic markers in infants. Danish infants (133) were randomly allocated to daily supplementation with a teaspoon (~5 mL/day) of fish oil (FO) or sunflower oil (SO) from 9 to 18 months of age. Before and after the intervention, we assessed BP, erythrocyte n-3 LCPUFA, plasma lipid profile, insulin, and glucose in addition to functional single nucleotide polymorphisms in FADS, PPARG2, and COX2. At 18 months, plasma TAG was lower in the FO compared with SO group (p = 0.014). This effect was modified by PPARG2-Pro12Ala, as TAG only decreased among heterozygotes. FO supplemented PPARG2 Pro12Ala heterozygotes also had decreased plasma glucose compared with the SO group (p = 0.043). The effect of FO on mean arterial BP at 18 months was gender dependent (p = 0.020) and reduced in boys only (p = 0.028). Diastolic BP was, however, lower among all FO supplemented homozygous COX2-T8473C variant allele carriers compared with the SO group (p = 0.001). In conclusion, our results confirm that FO supplementation in late infancy reduces TAG and BP and indicates that the effects are mediated via peroxisome proliferator-activated receptor-γ and cyclooxygenase-2. Furthermore, FO reduced plasma glucose only in PPARG2 heterozygotes.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0396-4) contains supplementary material, which is available to authorized users.  相似文献   
80.
Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号