首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3568篇
  免费   301篇
  国内免费   8篇
  3877篇
  2022年   15篇
  2021年   19篇
  2020年   23篇
  2019年   22篇
  2018年   23篇
  2017年   23篇
  2016年   49篇
  2015年   90篇
  2014年   102篇
  2013年   147篇
  2012年   191篇
  2011年   225篇
  2010年   142篇
  2009年   129篇
  2008年   200篇
  2007年   223篇
  2006年   205篇
  2005年   241篇
  2004年   240篇
  2003年   222篇
  2002年   229篇
  2001年   40篇
  2000年   27篇
  1999年   43篇
  1998年   64篇
  1997年   48篇
  1996年   35篇
  1995年   38篇
  1994年   41篇
  1993年   32篇
  1992年   26篇
  1991年   25篇
  1990年   38篇
  1989年   35篇
  1988年   27篇
  1987年   29篇
  1986年   20篇
  1985年   33篇
  1984年   45篇
  1983年   46篇
  1982年   49篇
  1981年   43篇
  1980年   49篇
  1979年   35篇
  1978年   38篇
  1977年   37篇
  1976年   36篇
  1975年   30篇
  1974年   22篇
  1973年   14篇
排序方式: 共有3877条查询结果,搜索用时 12 毫秒
81.
Quantitative genetic analysis of the ovariole number of the Australian Hibiscus flower-breeding Drosophila hibisci Bock was conducted on populations from two localities along a latitudinal cline in ovariole number previously observed in the species (Starmer et al., in press). Parental strains, F1, F1r (reciprocal), F2, backcross, and backcross reciprocal generations were used in a line-cross (generation means) analysis. This analysis revealed both additive and epistatic effects as important determinants of variation in ovariole number when larvae were reared at 25°C. Maternal effects and maternal-by-progeny genetic interactions were not significant. These results are comparable to previous studies that document epistatic components as genetic determinants of ovariole number in D. melanogaster. Parallel studies on ovariole number in D. hibisci parental and hybrid generations (F1 and F1r) reared as larvae at three temperatures (18°, 21.5°, and 25°C) showed environmental effects and genotype-by-environment interactions as significant influences on the phenotype. Maternal effects were present when temperature of larval development was considered and significant, nonlinear environmental effects were detected. Field collections of D. hibisci females showed that field conditions result in significant departure of ovariole number from comparable laboratory reared females. The significant epistatic genetic effects, genotype-by-environment interactions, and maternal effects indicate that the genetic architecture of traits, such as ovariole number, may be more complex than often acknowledged and thus may be compatible with Wright's view of a netlike relationship between the genome and complex characters (Wright 1968).  相似文献   
82.
Keyes KA  Mann L  Teicher B  Alvarez E 《Cytokine》2003,21(2):98-104
Tumor microenvironment plays a critical role in tumor growth, angiogenesis, and metastasis. Differences in site of tumor implantation result in differences in tumor growth, metastasis, as well as response to chemotherapy. We hypothesized that tumor-induced angiogenic growth factor production into the plasma will also be influenced by site of tumor implantation. We evaluated the site-dependent production of angiogenic growth factors in the plasma of tumor bearing animals at two different sites of implantation. Plasma levels of tumor necrosis factor-alpha (TNF-alpha), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were evaluated in nude mice bearing A2780, SKOV-3, or OVCAR-3 human ovarian tumors, as well as Panc-1, AsPC-1, or BxPC-3 human pancreatic tumors grown as subcutaneous (SC) xenografts or in the intraperitoneal (IP) cavity. Plasma VEGF and bFGF levels produced by two ovarian tumor lines and two pancreatic tumor lines were substantially higher when the tumors were implanted in the IP cavity than in the SC space. These studies indicated that the site of tumor implantation was an important determinant in the production of plasma VEGF and bFGF levels. As more and more anti-angiogenic agents are developed, the need for appropriate animal models becomes apparent. These results suggest the demand for an appropriate model for the in vivo evaluation of anti-angiogenesis.  相似文献   
83.
Thermoregulatory cutaneous vasodilation is diminished in the elderly. The goal of this study was to test the hypothesis that a reduction in nitric oxide (NO)-dependent mechanisms contributes to the attenuated reflex cutaneous vasodilation in older subjects. Seven young (23 +/- 2 yr) and seven older (71 +/- 6 yr) men were instrumented with two microdialysis fibers in the forearm skin. One site served as control (Ringer infusion), and the second site was perfused with 10 mM N(G)-nitro-l-arginine methyl ester to inhibit NO synthase (NOS) throughout the protocol. Water-perfused suits were used to raise core temperature 1.0 degrees C. Red blood cell (RBC) flux was measured with laser-Doppler flowmetry over each microdialysis fiber. Cutaneous vascular conductance (CVC) was calculated as RBC flux per mean arterial pressure, with values expressed as a percentage of maximal vasodilation (infusion of 28 mM sodium nitroprusside). NOS inhibition reduced CVC from 75 +/- 6% maximal CVC (CVC(max)) to 53 +/- 3% CVC(max) in the young subjects and from 64 +/- 5% CVC(max) to 29 +/- 2% CVC(max) in the older subjects with a 1.0 degrees C rise in core temperature. Thus the relative NO-dependent portion of cutaneous active vasodilation (AVD) accounted for approximately 23% of vasodilation in the young subjects and 60% of the vasodilation in the older subjects at this level of hyperthermia (P < 0.001). In summary, NO-mediated pathways contributed more to the total vasodilatory response of the older subjects at high core temperatures. This suggests that attenuated cutaneous vasodilation with age may be due to a reduction in, or decreased vascular responsiveness to, the unknown neurotransmitter(s) mediating AVD.  相似文献   
84.
IscS is a widely distributed cysteine desulfurase that catalyzes the pyridoxal phosphate-dependent desulfuration of L-cysteine and plays a central role in the delivery of sulfur to a variety of metabolic pathways. We report the crystal structure of Escherichia coli IscS to a resolution of 2.1A. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell dimensions a=73.70A, b=101.97A, c=108.62A (alpha=beta=gamma=90 degrees ). Molecular replacement with the Thermotoga maritima NifS model was used to determine phasing, and the IscS model was refined to an R=20.6% (R(free)=23.6%) with two molecules per asymmetric unit. The structure of E.coli IscS is similar to that of T.maritima NifS with nearly identical secondary structure and an overall backbone r.m.s. difference of 1.4A. However, in contrast to NifS a peptide segment containing the catalytic cysteine residue (Cys328) is partially ordered in the IscS structure. This segment of IscS (residues 323-335) forms a surface loop directed away from the active site pocket. Cys328 is positioned greater than 17A from the pyridoxal phosphate cofactor, suggesting that a large conformational change must occur during catalysis in order for Cys328 to participate in nucleophilic attack of a pyridoxal phosphate-bound cysteine substrate. Modeling suggests that rotation of this loop may allow movement of Cys328 to within approximately 3A of the pyridoxal phosphate cofactor.  相似文献   
85.
ABSTRACT

Genetic and biochemical studies have led to the identification of several cellular pathways for the biosynthesis of iron-sulfur proteins in different organisms. The most broadly distributed and highly conserved system involves an Hsp70 chaperone and J-protein co-chaperone system that interacts with a scaffold-like protein involved in [FeS]-cluster preassembly. Specialized forms of Hsp70 and their co-chaperones have evolved in bacteria (HscA, HscB) and in certain fungi (Ssq1, Jac1), whereas most eukaryotes employ a multifunctional mitochondrial Hsp70 (mtHsp70) together with a specialized co-chaperone homologous to HscB/Jac1. HscA and Ssq1 have been shown to specifically bind to a conserved sequence present in the [FeS]-scaffold protein designated IscU in bacteria and Isu in fungi, and the crystal structure of a complex of a peptide containing the IscU recognition region bound to the HscA substrate binding domain has been determined. The interaction of IscU/Isu with HscA/Ssq1 is regulated by HscB/Jac1 which bind the scaffold protein to assist delivery to the chaperone and stabilize the chaperone-scaffold complex by enhancing chaperone ATPase activity. The crystal structure of HscB reveals that the N-terminal J-domain involved in regulation of HscA ATPase activity is similar to other J-proteins, whereas the C-terminal domain is unique and appears to mediate specific interactions with IscU. At the present time the exact function(s) of chaperone-[FeS]-scaffold interactions in iron-sulfur protein biosynthesis remain(s) to be established. In vivo and in vitro studies of yeast Ssq1 and Jac1 indicate that the chaperones are not required for [FeS]-cluster assembly on Isu. Recent in vitro studies using bacterial HscA, HscB and IscU have shown that the chaperones destabilize the IscU[FeS] complex and facilitate cluster delivery to an acceptor apo-protein consistent with a role in regulating cluster release and transfer. Additional genetic and biochemical studies are needed to extend these findings to mtHsp70 activities in higher eukaryotes.  相似文献   
86.
The signaling cascades activated by insulin and IGF-1 contribute to the control of multiple cellular functions, including glucose metabolism and cell proliferation. In most cases these effects are mediated, at least in part, by insulin receptor substrates (IRS), one of which is insulin receptor substrate 1 (IRS-1). R-Ras is a member of the Ras family of GTPases and is involved in a variety of biological processes, including integrin activation, cell migration, and control of cell proliferation. Here we demonstrate that both R-Ras and BCAR3, a regulator of R-Ras activity that has been implicated in breast cancer, regulate the level of IRS-1 protein in estrogen-dependent MCF-7 and ZR75 breast cancer cells. In particular, expression of a constitutively activated R-Ras mutant, R-Ras38V, or of BCAR3 accelerates the degradation of IRS-1, leading to the impairment of signaling through insulin but not epidermal growth factor receptors. Moreover, knockdown of endogenous R-Ras levels in MCF-7 cells inhibits IRS-1 degradation induced by estrogen signaling blockade but not by long-term insulin treatment. Consistent with these results, both R-Ras38V expression and estrogen signaling blockade lead to the degradation of IRS-1, at least in part, through calpain activity. These findings show that R-Ras activity mediates inhibition of insulin signaling associated with suppression of estrogen action, implicating this GTPase in a growth-inhibitory mechanism associated with antiestrogen treatment of breast cancer.  相似文献   
87.
Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 microM fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1beta, IL-6, and TNF-alpha in the culture medium of LPS-treated NSCs (p<0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression.  相似文献   
88.
Mutations in the crumbs homologue 1 (CRB1) gene cause a specific form of retinitis pigmentosa (RP) that is designated "RP12" and is characterized by a preserved para-arteriolar retinal pigment epithelium (PPRPE) and by severe loss of vision at age <20 years. Because of the early onset of disease in patients who have RP with PPRPE, we considered CRB1 to be a good candidate gene for Leber congenital amaurosis (LCA). Mutations were detected in 7 (13%) of 52 patients with LCA from the Netherlands, Germany, and the United States. In addition, CRB1 mutations were detected in five of nine patients who had RP with Coats-like exudative vasculopathy, a relatively rare complication of RP that may progress to partial or total retinal detachment. Given that four of five patients had developed the complication in one eye and that not all siblings with RP have the complication, CRB1 mutations should be considered an important risk factor for the Coats-like reaction, although its development may require additional genetic or environmental factors. Although no clear-cut genotype-phenotype correlation could be established, patients with LCA, which is the most severe retinal dystrophy, carry null alleles more frequently than do patients with RP. Our findings suggest that CRB1 mutations are a frequent cause of LCA and are strongly associated with the development of Coats-like exudative vasculopathy in patients with RP.  相似文献   
89.
Raman micro-spectroscopy combined with multivariate analysis was employed to monitor real-time biochemical changes induced in living cells in vitro following exposure to a pharmaceutical. The cancer drug etoposide (topoisomerase II inhibitor) was used to induce double-strand DNA breaks in human type II pneumocyte-like cells (A549 cell-line). Raman spectra of A549 cells exposed to 100 microM etoposide were collected and classical least squares (CLS) analysis used to determine the relative concentrations of the main cellular components. It was found that the concentrations of DNA and RNA significantly (P < 0.05) decreased, whilst the concentration of lipids significantly (P < 0.05) increased with increasing etoposide exposure time as compared to control untreated A549 cells. The concentration of DNA decreased by 27.5 and 87.0% after 24 and 48 h exposure to etoposide respectively. Principal components analysis (PCA) successfully discriminated between treated and untreated cells, with the main variance between treatment groups attributed to changes in DNA and lipid. DNA fragmentation was confirmed by Western blot analysis of apoptosis regulator protein p53 and cell metabolic activity determined by MTT assay. The over-expression of p53 protein in the etoposide treated cells indicated a significant level of DNA fragmentation and apoptosis. MTT tests confirmed that cellular metabolic activity decreased following exposure to etoposide by 29.4 and 61.2% after 24 and 48 h, respectively. Raman micro-spectroscopy may find applications in the toxicology screening of other drugs, chemicals and new biomaterials, with a range of cell types.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号