首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5084篇
  免费   544篇
  国内免费   8篇
  2021年   33篇
  2020年   28篇
  2019年   28篇
  2018年   31篇
  2017年   44篇
  2016年   69篇
  2015年   129篇
  2014年   154篇
  2013年   227篇
  2012年   259篇
  2011年   291篇
  2010年   197篇
  2009年   167篇
  2008年   259篇
  2007年   286篇
  2006年   258篇
  2005年   294篇
  2004年   293篇
  2003年   280篇
  2002年   283篇
  2001年   92篇
  2000年   61篇
  1999年   79篇
  1998年   78篇
  1997年   69篇
  1996年   55篇
  1995年   56篇
  1994年   63篇
  1993年   52篇
  1992年   74篇
  1991年   62篇
  1990年   83篇
  1989年   83篇
  1988年   65篇
  1987年   58篇
  1986年   50篇
  1985年   62篇
  1984年   69篇
  1983年   65篇
  1982年   62篇
  1981年   65篇
  1980年   69篇
  1979年   52篇
  1978年   61篇
  1977年   52篇
  1976年   49篇
  1975年   41篇
  1974年   47篇
  1973年   24篇
  1972年   27篇
排序方式: 共有5636条查询结果,搜索用时 421 毫秒
921.
Analysis of shotgun proteomics datasets requires techniques to distinguish correct peptide identifications from incorrect identifications, such as linear discriminant functions and target/decoy protein databases. We report an efficient, flexible proteomic analysis workflow pipeline that implements these techniques to control both peptide and protein false discovery rates. We demonstrate its performance by analyzing two-dimensional liquid chromatography separations of lens proteins from human, mouse, bovine, and chicken lenses. We compared the use of International Protein Index databases to UniProt databases and no-enzyme SEQUEST searches to tryptic searches. Sequences present in the International Protein Index databases allowed detection of several novel crystallins. An alternate start codon isoform of βA4 was found in human lens. The minor crystallin γN was detected for the first time in bovine and chicken lenses. Chicken γS was identified and is the first member of the γ-crystallin family observed in avian lenses.  相似文献   
922.
The hyperthermophilic bacterium, Thermotoga neapolitana, has potential for use in biological hydrogen (H2) production. The objectives of this study were to (1) determine the fermentation stoichiometry of Thermotoga neapolitana and examine H2 production at various growth temperatures, (2) investigate the effect of oxygen (O2) on H2 production, and (3) determine the cause of glucose consumption inhibition. Batch fermentation experiments were conducted at temperatures of 60, 65, 70, 77, and 85°C to determine product yield coefficients and volumetric productivity rates. Yield coefficients did not show significant changes with respect to growth temperature and the rate of H2 production reached maximum levels in both the 77°C and 85°C experiments. The fermentation stoichiometry for T. neapolitana at 85°C was 3.8 mol H2, 2 mol CO2, 1.8 mol acetate, and 0.1 mol lactate produced per mol of glucose consumed. Under microaerobic conditions H2 production did not increase when compared to anaerobic conditions, which supports other evidence in the literature that T. neapolitana does not produce H2 through microaerobic metabolism. Glucose consumption was inhibited by a decrease in pH. When pH was adjusted with buffer addition cultures completely consumed available glucose. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
923.

Background

Autophagy has been shown recently to play an important role in the intracellular survival of several pathogenic bacteria. In this study, we investigated the effect of a novel small-molecule autophagy-inducing agent, AR-12, on the survival of Francisella tularensis, the causative bacterium of tularemia in humans and a potential bioterrorism agent, in macrophages.

Methods and results

Our results show that AR-12 induces autophagy in THP-1 macrophages, as indicated by increased autophagosome formation, and potently inhibits the intracellular survival of F. tularensis (type A strain, Schu S4) and F. novicida in macrophages in association with increased bacterial co-localization with autophagosomes. The effect of AR-12 on intracellular F. novicida was fully reversed in the presence of the autophagy inhibitor, 3-methyl adenine or the lysosome inhibitor, chloroquine. Intracellular F. novicida were not susceptible to the inhibitory activity of AR-12 added at 12 h post-infection in THP-1 macrophages, and this lack of susceptibility was independent of the intracellular location of bacteria.

Conclusion

Together, AR-12 represents a proof-of-principle that intracellular F. tularensis can be eradicated by small-molecule agents that target innate immunity.  相似文献   
924.
Because cultivated tomato (Solanum lycopersicum L.) is low in genetic diversity, public, verified single nucleotide polymorphism (SNP) markers within the species are in demand. To promote marker development we resequenced approximately 23 kb in a diverse set of 31 tomato lines including TA496. Three classes of markers were sampled: (1) 26 expressed-sequence tag (EST), all of which were predicted to be polymorphic based on TA496, (2) 14 conserved ortholog set II (COSII) or unigene, and (3) ten published sequences, composed of nine fruit quality genes and one anonymous RFLP marker. The latter two types contained mostly noncoding DNA. In total, 154 SNPs and 34 indels were observed. The distributions of nucleotide diversity estimates among marker types were not significantly different from each other. Ascertainment bias of SNPs was evaluated for the EST markers. Despite the fact that the EST markers were developed using SNP prediction within a sample consisting of only one TA496 allele and one additional allele, the majority of polymorphisms in the 26 EST markers were represented among the other 30 tomato lines. Fifteen EST markers with published SNPs were more closely examined for bias. Mean SNP diversity observations were not significantly different between the original discovery sample of two lines (53 SNPs) and the 31 line diversity panel (56 SNPs). Furthermore, TA496 shared its haplotype with at least one other line at 11 of the 15 markers. These data demonstrate that public EST databases and noncoding regions are a valuable source of unbiased SNP markers in tomato. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.  相似文献   
925.
Metapopulation extinction risk is the probability that all local populations are simultaneously extinct during a fixed time frame. Dispersal may reduce a metapopulation’s extinction risk by raising its average per-capita growth rate. By contrast, dispersal may raise a metapopulation’s extinction risk by reducing its average population density. Which effect prevails is controlled by habitat fragmentation. Dispersal in mildly fragmented habitat reduces a metapopulation’s extinction risk by raising its average per-capita growth rate without causing any appreciable drop in its average population density. By contrast, dispersal in severely fragmented habitat raises a metapopulation’s extinction risk because the rise in its average per-capita growth rate is more than offset by the decline in its average population density. The metapopulation model used here shows several other interesting phenomena. Dispersal in sufficiently fragmented habitat reduces a metapopulation’s extinction risk to that of a constant environment. Dispersal between habitat fragments reduces a metapopulation’s extinction risk insofar as local environments are asynchronous. Grouped dispersal raises the effective habitat fragmentation level. Dispersal search barriers raise metapopulation extinction risk. Nonuniform dispersal may reduce the effective fraction of suitable habitat fragments below the extinction threshold. Nonuniform dispersal may make demographic stochasticity a more potent metapopulation extinction force than environmental stochasticity.  相似文献   
926.
Microbial communities on aerial plant leaves may contribute to the degradation of organic air pollutants such as phenol. Epiphytic bacteria capable of phenol degradation were isolated from the leaves of green ash trees grown at a site rich in airborne pollutants. Bacteria from these communities were subjected, in parallel, to serial enrichments with increasing concentrations of phenol and to direct plating followed by a colony autoradiography screen in the presence of radiolabeled phenol. Ten isolates capable of phenol mineralization were identified. Based on 16S rDNA sequence analysis, these isolates included members of the genera Acinetobacter, Alcaligenes, and Rhodococcus. The sequences of the genes encoding the large subunit of a multicomponent phenol hydroxylase (mPH) in these isolates indicated that the mPHs of the gram-negative isolates belonged to a single kinetic class, and that is one with a moderate affinity for phenol; this affinity was consistent with the predicted phenol levels in the phyllosphere. PCR amplification of genes for catechol 1,2-dioxygenase (C12O) and catechol 2,3-dioxygenase (C23O) in combination with a functional assay for C23O activity provided evidence that the gram-negative strains had the C12O−, but not the C23O−, phenol catabolic pathway. Similarly, the Rhodococcus isolates lacked C23O activity, although consensus primers to the C12O and C23O genes of Rhodococcus could not be identified. Collectively, these results demonstrate that these leaf surface communities contained several taxonomically distinct phenol-degrading bacteria that exhibited diversity in their mPH genes but little diversity in the catabolic pathways they employ for phenol degradation.  相似文献   
927.
Extensive X-ray crystallographic studies carried out on the catalytic-subunit of protein kinase A (PKA-C) enabled the atomic characterization of inhibitor and/or substrate peptide analogues trapped at its active site. Yet, the structural and dynamic transitions of these peptides from the free to the bound state are missing. These conformational transitions are central to understanding molecular recognition and the enzymatic cycle. NMR spectroscopy allows one to study these phenomena under functionally relevant conditions. However, the amounts of isotopically labeled peptides required for this technique present prohibitive costs for solid-phase peptide synthesis. To enable NMR studies, we have optimized both expression and purification of isotopically enriched substrate/inhibitor peptides using a recombinant fusion protein system. Three of these peptides correspond to the cytoplasmic regions of the wild-type and lethal mutants of the membrane protein phospholamban, while the fourth peptide correspond to the binding epitope of the heat-stable protein kinase inhibitor (PKI5–24). The target peptides were fused to the maltose binding protein (MBP), which is further purified using a His6 tag approach. This convenient protocol allows for the purification of milligram amounts of peptides necessary for NMR analysis.  相似文献   
928.
929.
Sex-dependent differences in adaptation to famine have long been appreciated, thought to hinge on female versus male preferences for fat versus protein sources, respectively. However, whether these differences can be reduced to neurons, independent of typical nutrient depots, such as adipose tissue, skeletal muscle, and liver, was heretofore unknown. A vital adaptation to starvation is autophagy, a mechanism for recycling amino acids from organelles and proteins. Here we show that segregated neurons from males in culture are more vulnerable to starvation than neurons from females. Nutrient deprivation decreased mitochondrial respiration, increased autophagosome formation, and produced cell death more profoundly in neurons from males versus females. Starvation-induced neuronal death was attenuated by 3-methyladenine, an inhibitor of autophagy; Atg7 knockdown using small interfering RNA; or l-carnitine, essential for transport of fatty acids into mitochondria, all more effective in neurons from males versus females. Relative tolerance to nutrient deprivation in neurons from females was associated with a marked increase in triglyceride and free fatty acid content and a cytosolic phospholipase A2-dependent increase in formation of lipid droplets. Similar sex differences in sensitivity to nutrient deprivation were seen in fibroblasts. However, although inhibition of autophagy using Atg7 small interfering RNA inhibited cell death during starvation in neurons, it increased cell death in fibroblasts, implying that the role of autophagy during starvation is both sex- and tissue-dependent. Thus, during starvation, neurons from males more readily undergo autophagy and die, whereas neurons from females mobilize fatty acids, accumulate triglycerides, form lipid droplets, and survive longer.Sex-dependent differences in adaptation to famine have long been appreciated (1, 2), thought to hinge on a female preference for fat sources, in contrast to a male preference for protein sources (3). Fatty acid metabolism is different between sexes normally (4) and under conditions of starvation (1, 2). During exercise, in addition to increases in carbohydrate requirement, men increase their need for amino acids, whereas women increase mobilization of fat (5). Furthermore, sex-dependent responses to nutritional stress associated with either self-induced weight loss or illness-related cachexia also exist (6, 7).An important adaptation to starvation is autophagy (autophagy-associated proteins, abbreviated ATG). Classic, starvation-induced autophagy is initiated by nutrient and amino acid deprivation, glucagon, and cAMP (8, 9). ATG7, a ubiquitin E1-like enzyme, is essential for autophagy, with phosphorylation of preautophagosomal membranes, formation of ATG12-ATG5 complexes, and processing of ATG8/LC3 (microtubule-associated protein light chain-3) as other crucial steps in this process (10). Starvation-induced autophagy is regulated by class III phosphatidylinositol 3-kinase and the Bcl-2-interacting partner, Beclin-1 (11). The autophagosomes then engulf cytoplasmic material and/or organelles, such as mitochondria, the latter sometimes referred to as “mitophagy,” disassembling large proteins and organelles to recycle amino acids and other nutrients, an important response to starvation (12).It is unknown whether starvation can induce autophagy in the brain; however, there is evidence that critical starvation can result in brain atrophy in humans. It has been reported that ∼30% of people during a prolonged hunger strike (mean of 199 days) will show brain tissue loss (13), and brain shrinkage in patients with anorexia nervosa is well documented (14, 15). Although 48 h of food deprivation does not produce detectable autophagy in brains from mice (16), the aforementioned reports are consistent with long durations of starvation as a bona fide stimulus for autophagy in brain. There are recent studies suggesting that other stimuli can induce autophagy in the brain, such as trauma (17) and ischemia (18), and that autophagy may contribute to neuronal death. There is also evidence for autophagy in the human brain after trauma and critical illness (19), which probably includes both elements of malnutrition and systemic stress. A potential role for brain atrophy as a contributor to neurological morbidity in the critically ill and injured is an emerging topic (20).  相似文献   
930.
The ubiquitously expressed reduced folate carrier (RFC) is the major transport system for folate cofactors in mammalian cells and tissues. Previous considerations of RFC structure and mechanism were based on the notion that RFC monomers were sufficient to mediate transport of folate and antifolate substrates. The present study examines the possibility that human RFC (hRFC) exists as higher order homo-oligomers. By chemical cross-linking, transiently expressed hRFC in hRFC-null HeLa (R5) cells with the homobifunctional cross-linker 1,3-propanediyl bis-methanethiosulfonate and Western blotting, hRFC species with molecular masses of hRFC homo-oligomers were identified. Hemagglutinin- and Myc epitope-tagged hRFC proteins expressed in R5 cells were co-immunoprecipitated from both membrane particulate and surface-enriched membrane fractions, indicating that oligomeric hRFC is expressed at the cell surface. By co-expression of wild type and inactive mutant S138C hRFCs, combined with surface biotinylation and confocal microscopy, a dominant-negative phenotype was demonstrated involving greatly decreased cell surface expression of both mutant and wild type carrier caused by impaired intracellular trafficking. For another hRFC mutant (R373A), expression of oligomeric wild type-mutant hRFC was accompanied by a significant and disproportionate loss of wild type activity unrelated to the level of surface carrier. Collectively, our results demonstrate the existence of hRFC homo-oligomers. They also establish the likely importance of these higher order hRFC structures to intracellular trafficking and carrier function.Folates are members of the B class of vitamins that are required for the synthesis of nucleotide precursors, serine, and methionine in one-carbon transfer reactions (1). Because mammals cannot synthesize folates de novo, cellular uptake of these derivatives is essential for cell growth and tissue regeneration (2, 3). Folates are hydrophilic anionic molecules that do not cross biological membranes by diffusion alone, so it is not surprising that sophisticated membrane transport systems have evolved to facilitate their accumulation by mammalian cells.The ubiquitously expressed reduced folate carrier (RFC)2 is widely considered to be the major transport system for folate co-factors in mammalian cells and tissues (3, 4). RFC plays a generalized role in folate transport and provides specialized tissue functions such as transport across the basolateral membrane of renal proximal tubules (5), transplacental transport of folates (6), and folate transport across the blood-brain barrier (7), although the contribution of RFC to intestinal absorption of folates remains controversial (8, 9). Loss of RFC expression or function portends potentially profound physiologic and developmental consequences associated with folate deficiency (10). RFC is also a major transporter of antifolate drugs used for cancer chemotherapy such as methotrexate (Mtx), pemetrexed, and raltitrexed (4). Loss of RFC expression or synthesis of mutant RFC protein in tumor cells results in antifolate resistance caused by incomplete inhibition of cellular enzyme targets and low levels of antifolate substrate for polyglutamate synthesis (4, 11).Reflecting its particular physiologic and pharmacologic importance, interest in RFC structure and function has been high. Since 1994, when murine RFC was first cloned (12), application of state-of-the-art molecular biology and biochemistry methods for characterizing polytopic membrane proteins has led to a progressively detailed picture of the molecular structure of the carrier, including its membrane topology, N-glycosylation, functionally or structurally important domains and amino acids, and packing of α-helix transmembrane domains (TMDs) (4, 13). Although no crystal structure for RFC has yet been reported, a detailed homology model for human RFC (hRFC) based on the bacterial lactose/proton symporter LacY and glycerol 3-phosphate/inorganic phosphate antiporter GlpT was generated (13, 14) that permits testing of hypotheses related to hRFC structure and mechanism in a manner not previously possible.Considerations of hRFC structure and mechanism to date have all been based on the notion that a single 591-amino acid hRFC molecule is sufficient to mediate concentrative uptake of folate and antifolate substrates. However, a growing literature suggests that quaternary structure involving the formation of higher order oligomers (e.g. dimers, tetramers, etc.) is commonly an important feature of the structure and function of many membrane transporters (15-18). For major facilitator superfamily proteins, both monomeric (e.g. LacY, GlpT, UhpT, and GLUT3) (19-22) and oligomeric (e.g. LacS, AE1, GLUT1, and TetA) (23-28) structures have been reported, establishing the lack of a clear structural consensus for these related proteins.In this report, we explore the question of whether hRFC exists as a homo-oligomeric species composed of multiple hRFC monomers. Based on results with an assortment of biochemical methods with wt and a collection of mutant hRFC proteins, we not only demonstrate the existence of oligomeric hRFC but also establish the probable importance of these higher order structures to intracellular trafficking and carrier function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号