首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4614篇
  免费   390篇
  国内免费   8篇
  5012篇
  2021年   29篇
  2020年   24篇
  2019年   29篇
  2018年   34篇
  2017年   31篇
  2016年   60篇
  2015年   117篇
  2014年   128篇
  2013年   192篇
  2012年   238篇
  2011年   262篇
  2010年   176篇
  2009年   154篇
  2008年   238篇
  2007年   257篇
  2006年   229篇
  2005年   267篇
  2004年   278篇
  2003年   251篇
  2002年   266篇
  2001年   64篇
  2000年   62篇
  1999年   66篇
  1998年   75篇
  1997年   59篇
  1996年   42篇
  1995年   42篇
  1994年   49篇
  1993年   40篇
  1992年   57篇
  1991年   56篇
  1990年   66篇
  1989年   57篇
  1988年   58篇
  1987年   50篇
  1986年   40篇
  1985年   47篇
  1984年   61篇
  1983年   70篇
  1982年   67篇
  1981年   61篇
  1980年   63篇
  1979年   54篇
  1978年   54篇
  1977年   50篇
  1976年   51篇
  1975年   43篇
  1974年   37篇
  1973年   28篇
  1971年   22篇
排序方式: 共有5012条查询结果,搜索用时 0 毫秒
71.
72.
73.
74.
Marijuana is the most widely abused illegal drug, and its spectrum of effects suggests that several receptors are responsible for the activity. Two cannabinoid receptor subtypes, CB1 and CB2, have been identified, but the complex pharmacological properties of exogenous cannabinoids and endocannabinoids are not fully explained by their signaling. The orphan receptor GPR55 binds a subset of CB1 and CB2 ligands and has been proposed as a cannabinoid receptor. This designation, however, is controversial as a result of recent studies in which lysophosphatidylinositol (LPI) was identified as a GPR55 agonist. Defining a biological role for GPR55 requires GPR55 selective ligands that have been unavailable. From a β-arrestin, high-throughput, high-content screen of 300000 compounds run in collaboration with the Molecular Libraries Probe Production Centers Network initiative (PubChem AID1965), we identified potent GPR55 selective agonists. By modeling of the GPR55 activated state, we compared the GPR55 binding conformations of three of the novel agonists obtained from the screen, CID1792197, CID1172084, and CID2440433 (PubChem Compound IDs), with that of LPI. Our modeling indicates the molecular shapes and electrostatic potential distributions of these agonists mimic those of LPI; the GPR55 binding site accommodates ligands that have inverted-L or T shapes with long, thin profiles that can fit vertically deep in the receptor binding pocket while their broad head regions occupy a horizontal binding pocket near the GPR55 extracellular loops. Our results will allow the optimization and design of second-generation GPR55 ligands and provide a means for distinguishing GPR55 selective ligands from those interacting with cannabinoid receptors.  相似文献   
75.
The success of psychotherapy depends on the nature of the therapeutic relationship between a therapist and a client. We use dynamical systems theory to model the dynamics of the emotional interaction between a therapist and client. We determine how the therapeutic endpoint and the dynamics of getting there depend on the parameters of the model. Previously Gottman et al. used a very similar approach (physical-sciences paradigm) for modeling and making predictions about husband–wife relationships. Given that this novel approach shed light on the dyadic interaction between couples, we have applied it to the study of the relationship between therapist and client. The results of our computations provide a new perspective on the therapeutic relationship and a number of useful insights. Our goal is to create a model that is capable of making solid predictions about the dynamics of psychotherapy with the ultimate intention of using it to better train therapists.  相似文献   
76.
77.
Calcium release via intracellular Ca2+ release channels is a central event underpinning the generation of numerous, often divergent physiological processes. In electrically non-excitable cells, this Ca2+ release is brought about primarily through activation of inositol 1,4,5-trisphosphate receptors and typically takes the form of calcium oscillations. It is widely believed that information is carried in the temporal and spatial characteristics of these signals. Furthermore, stimulation of individual cells with different agonists can generate Ca2+ oscillations with dramatically different spatial and temporal characteristics. Thus, mechanisms must exist for the acute regulation of Ca2+ release such that agonist-specific Ca2+ signals can be generated. One such mechanism by which Ca2+ signals can be modulated is through simultaneous activation of multiple second messenger pathways. For example, activation of both the InsP3 and cAMP pathways leads to the modulation of Ca2+ release through protein kinase A mediated phosphoregulation of the InsP3R. Indeed, each InsP3R subtype is a potential substrate for PKA, although the functional consequences of this phosphorylation are not clear. This review will focus on recent advances in our understanding of phosphoregulation of InsP3R, as well as the functional consequences of this modulation in terms of eliciting specific cellular events.  相似文献   
78.
Regulation of airway tight junctions by proinflammatory cytokines   总被引:12,自引:0,他引:12       下载免费PDF全文
Epithelial tight junctions (TJs) provide an important route for passive electrolyte transport across airway epithelium and provide a barrier to the migration of toxic materials from the lumen to the interstitium. The possibility that TJ function may be perturbed by airway inflammation originated from studies reporting (1) increased levels of the proinflammatory cytokines interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-alpha), interferon gamma (IFN-gamma), and IL-1beta in airway epithelia and secretions from cystic fibrosis (CF) patients and (2) abnormal TJ strands of CF airways as revealed by freeze-fracture electron microscopy. We measured the effects of cytokine exposure of CF and non-CF well-differentiated primary human airway epithelial cells on TJ properties, including transepithelial resistance, paracellular permeability to hydrophilic solutes, and the TJ proteins occludin, claudin-1, claudin-4, junctional adhesion molecule, and ZO-1. We found that whereas IL-1beta treatment led to alterations in TJ ion selectivity, combined treatment of TNF-alpha and IFN-gamma induced profound effects on TJ barrier function, which could be blocked by inhibitors of protein kinase C. CF bronchi in vivo exhibited the same pattern of expression of TJ-associated proteins as cultures exposed in vitro to prolonged exposure to TNF-alpha and IFN-gamma. These data indicate that the TJ of airway epithelia exposed to chronic inflammation may exhibit parallel changes in the barrier function to both solutes and ions.  相似文献   
79.
FK506 is a new FDA-approved immunosuppressant used for prevention of allograft rejection in, for example, liver and kidney transplantations. FK506 is inactive by itself and requires binding to an FK506 binding protein-12 (FKBP-12), or immunophilin, for activation. In this regard, FK506 is analogous to cyclosporin A, which must bind to its immunophilin (cyclophilin A) to display activity. This FK506-FKBP complex inhibits the activity of the serine/threonine protein phosphatase 2B (calcineurin), the basis for the immunosuppressant action of FK506. The discovery that immunophilins are also present in the nervous system introduces a new level of complexity in the regulation of neuronal function. Two important calcineurin targets in brain are the growth-associated protein GAP-43 and nitric oxide (NO) synthase (NOS). This review focuses on studies showing that systemic administration of FK506 dose-dependently speeds nerve regeneration and functional recovery in rats following a sciatic-nerve crush injury. The effect appears to result from an increased rate of axonal regeneration. The nerve regenerative property of this class of agents is separate from their immunosuppressant action because FK506-related compounds that bind to FKBP-12 but do not inhibit calcineurin are also able to increase nerve regeneration. Thus, FK506's ability to increase nerve regeneration arises via a calcineurin-independent mechanism (i.e., one not involving an increase in GAP-43 phosphorylation). Possible mechanisms of action are discussed in relation to known actions of FKBPs: the interaction of FKBP-12 with two Ca2+ release-channels (the ryanodine and inositol 1,4,5-triphosphate receptors) which is disrupted by FK506, thereby increasing Ca2+ flux; the type 1 receptor for the transforming growth factor-β (TGF-β1), which stimulates nerve growth factor (NGF) synthesis by glial cells, and is a natural ligand for FKBP-12; and the immunophilin FKBP-52/FKBP-59, which has also been identified as a heat-shock protein (HSP-56) and is a component of the nontransformed glucocorticoid receptor. Taken together, studies of FK506 indicate broad functional roles for the immunophilins in the nervous system. Both calcineurin-dependent (e.g., neuroprotection via reduced NO formation) and calcineurin-independent mechanisms (i.e., nerve regeneration) need to be invoked to explain the many different neuronal effects of FK506. This suggests that multiple immunophilins mediate FK506's neuronal effects. Novel, nonimmunosuppressant ligands for FKBPs may represent important new drugs for the treatment of a variety of neurological disorders.  相似文献   
80.
Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号