首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2375篇
  免费   220篇
  国内免费   2篇
  2597篇
  2023年   12篇
  2022年   31篇
  2021年   50篇
  2020年   28篇
  2019年   36篇
  2018年   40篇
  2017年   42篇
  2016年   61篇
  2015年   118篇
  2014年   123篇
  2013年   157篇
  2012年   177篇
  2011年   165篇
  2010年   109篇
  2009年   100篇
  2008年   143篇
  2007年   149篇
  2006年   111篇
  2005年   118篇
  2004年   125篇
  2003年   120篇
  2002年   100篇
  2001年   32篇
  2000年   32篇
  1999年   22篇
  1998年   23篇
  1997年   27篇
  1996年   15篇
  1995年   13篇
  1994年   10篇
  1993年   18篇
  1992年   17篇
  1991年   19篇
  1990年   22篇
  1989年   16篇
  1988年   11篇
  1987年   14篇
  1986年   10篇
  1985年   7篇
  1984年   15篇
  1983年   10篇
  1982年   14篇
  1981年   15篇
  1980年   8篇
  1979年   15篇
  1978年   10篇
  1977年   7篇
  1975年   11篇
  1965年   7篇
  1962年   6篇
排序方式: 共有2597条查询结果,搜索用时 15 毫秒
61.
Atherothrombotic cardiovascular disease associated with hyperhomocysteinemia has been proposed to result, at least in part, from increased vascular oxidative stress. Here we characterize one mechanism by which homocyteine may induce a vascular cell type-specific oxidative stress. Our results show that L-homocysteine at micromolar levels stereospecifically increases lipid peroxidation in cultured endothelial cells, but not in vascular smooth muscle cells or when medium is incubated in the absence of cells. Consistent with these observations, homocysteine also increases the formation of intracellular reactive oxygen species. The pro-oxidant effect of homocysteine can be fully replicated by an equivalent concentration of homocystine (i.e., an oxidized form of homocysteine), but not with cysteine or glutathione. Homocyst(e)ine-dependent lipid peroxidation is independent of H(2)O(2) and alterations in glutathione peroxidase activity, but dependent on superoxide. Mechanistically, the pro-oxidant effect of homocysteine appears to involve endothelial nitric oxide synthase (eNOS), as it is blocked by the eNOS inhibitor L-N(G)-nitroarginine methyl ester. Thus, homocyst(e)ine actively promotes oxidative stress in endothelial cells via an eNOS-dependent mechanism.  相似文献   
62.

Background

Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome.

Results

Analysis of Amborella BAC ends sequenced from each contig suggests that the density of long terminal repeat retrotransposons is negatively correlated with that of protein coding genes. Syntenic, presumably ancestral, gene blocks were identified in comparisons of the Amborella BAC contigs and the sequenced Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa genomes. Parsimony mapping of the loss of synteny corroborates previous analyses suggesting that the rate of structural change has been more rapid on lineages leading to Arabidopsis and Oryza compared with lineages leading to Populus and Vitis. The gamma paleohexiploidy event identified in the Arabidopsis, Populus and Vitis genomes is shown to have occurred after the divergence of all other known angiosperms from the lineage leading to Amborella.

Conclusions

When placed in the context of a physical map, BAC end sequences representing just 5.4% of the Amborella genome have facilitated reconstruction of gene blocks that existed in the last common ancestor of all flowering plants. The Amborella genome is an invaluable reference for inferences concerning the ancestral angiosperm and subsequent genome evolution.  相似文献   
63.
Thioredoxin (Trx1), a very important protein for regulating intracellular redox reactions, was immobilized on iron oxide superparamagnetic nanoparticles previously coated with 3-aminopropyltriethoxysilane (APTS) via covalent coupling using the EDC (1-ethyl-3-{3-dimethylaminopropyl}carbodiimide) method. The system was extensively characterized by atomic force microscopy, vibrational and magnetic techniques. In addition, gold nanoparticles were also employed to probe the exposed groups in the immobilized enzyme based on the SERS (surface enhanced Raman scattering) effect, confirming the accessibility of the cysteines residues at the catalytic site. For the single coated superparamagnetic nanoparticle, by monitoring the enzyme activity with the Ellman reagent, DTNB = 5,5′-dithio-bis(2-15 nitrobenzoic acid), an inhibitory effect was observed after the first catalytic cycle. The inhibiting effect disappeared after the application of an additional silicate coating before the APTS treatment, reflecting a possible influence of unprotected iron-oxide sites in the redox kinetics. In contrast, the doubly coated system exhibited a normal in-vitro kinetic activity, allowing a good enzyme recovery and recyclability.  相似文献   
64.
The present study evaluated the color vision of 44 patients with Duchenne muscular dystrophy (DMD) (mean age 14.8 years; SD 4.9) who were submitted to a battery of four different color tests: Cambridge Colour Test (CCT), Neitz Anomaloscope, Ishihara, and American Optical Hardy-Rand-Rittler (AO H-R-R). Patients were divided into two groups according to the region of deletion in the dystrophin gene: upstream of exon 30 (n=12) and downstream of exon 30 (n=32). The control group was composed of 70 age-matched healthy male subjects with no ophthalmological complaints. Of the patients with DMD, 47% (21/44) had a red-green color vision defect in the CCT, confirmed by the Neitz Anomaloscope with statistical agreement (P<.001). The Ishihara and the AO H-R-R had a lower capacity to detect color defects--5% and 7%, respectively, with no statistical similarity between the results of these two tests nor between CCT and Anomaloscope results (P>.05). Of the patients with deletion downstream of exon 30, 66% had a red-green color defect. No color defect was found in the patients with deletion upstream of exon 30. A negative correlation between the color thresholds and age was found for the controls and patients with DMD, suggesting a nonprogressive color defect. The percentage (66%) of patients with a red-green defect was significantly higher than the expected <10% for the normal male population (P<.001). In contrast, patients with DMD with deletion upstream of exon 30 had normal color vision. This color defect might be partially explained by a retina impairment related to dystrophin isoform Dp260.  相似文献   
65.
Chronic intermittent hypoxia (IH) during sleep can result from obstructive sleep apnea (OSA), a disorder that is particularly prevalent in obesity. OSA is associated with high levels of circulating leptin, cardiovascular dysfunction, and dyslipidemia. Relationships between leptin and cardiovascular function in OSA and chronic IH are poorly understood. We exposed lean wild-type (WT) and obese leptin-deficient ob/ob mice to IH for 4 wk, with and without leptin infusion, and measured cardiovascular indices including aortic vascular stiffness, endothelial function, cardiac myocyte morphology, and contractile properties. At baseline, ob/ob mice had decreased vascular compliance and endothelial function vs. WT mice. We found that 4 wk of IH decreased vascular compliance and endothelial relaxation responses to acetylcholine in both WT and leptin-deficient ob/ob animals. Recombinant leptin infusion in both strains restored IH-induced vascular abnormalities toward normoxic WT levels. Cardiac myocyte morphology and function were unaltered by IH. Serum cholesterol and triglyceride levels were significantly decreased by leptin treatment in IH mice, as was hepatic stearoyl-Coenzyme A desaturase 1 expression. Taken together, these data suggest that restoring normal leptin signaling can reduce vascular stiffness, increase endothelial relaxation, and correct dyslipidemia associated with IH.  相似文献   
66.
67.
68.
The intensification of human activities within the habitats of wild animals is increasing the risk of interspecies disease transmission. This risk is particularly important for great apes, given their close phylogenetic relationship with humans. Areas of high human density or intense research and ecotourism activities expose apes to a high risk of disease spillover from humans. Is this risk lower in areas of low human density? We determined the prevalence of Escherichia coli antibiotic-resistant isolates in a population of the critically endangered western lowland gorilla (Gorilla gorilla gorilla) and other wild mammals in Lopé National Park (LNP), Gabon, and we tested whether the observed pattern could be explained by bacterial transmission from humans and domestic animals into wildlife populations. Our results show a high prevalence of antibiotic-resistant bacterial isolates in humans and low levels in gorillas and other wildlife. The significant differences in the genetic background of the resistant bacteria isolated from humans and gorillas suggest that transmission is low or does not occur between these two species. These findings indicate that the presence of antibiotic-resistant strains in wildlife do not imply direct bacteria transmission from humans. Thus, in areas of low human density, human-wildlife E. coli transmission seems to be low. The presence of antibiotic-resistant isolates in gorillas may be better explained by other mechanisms for resistance acquisition, such as horizontal gene exchange among bacteria or naturally acquired resistance.  相似文献   
69.
70.
The formation and maintenance of microtubules requires their polymerisation, but little is known about how this polymerisation is regulated in cells. Focussing on the essential microtubule bundles in axons of Drosophila and Xenopus neurons, we show that the plus-end scaffold Eb1, the polymerase XMAP215/Msps and the lattice-binder Tau co-operate interdependently to promote microtubule polymerisation and bundle organisation during axon development and maintenance. Eb1 and XMAP215/Msps promote each other’s localisation at polymerising microtubule plus-ends. Tau outcompetes Eb1-binding along microtubule lattices, thus preventing depletion of Eb1 tip pools. The three factors genetically interact and show shared mutant phenotypes: reductions in axon growth, comet sizes, comet numbers and comet velocities, as well as prominent deterioration of parallel microtubule bundles into disorganised curled conformations. This microtubule curling is caused by Eb1 plus-end depletion which impairs spectraplakin-mediated guidance of extending microtubules into parallel bundles. Our demonstration that Eb1, XMAP215/Msps and Tau co-operate during the regulation of microtubule polymerisation and bundle organisation, offers new conceptual explanations for developmental and degenerative axon pathologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号