首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   69篇
  541篇
  2023年   4篇
  2021年   11篇
  2020年   10篇
  2019年   13篇
  2018年   12篇
  2017年   6篇
  2016年   15篇
  2015年   12篇
  2014年   22篇
  2013年   17篇
  2012年   20篇
  2011年   22篇
  2010年   22篇
  2009年   14篇
  2008年   17篇
  2007年   20篇
  2006年   18篇
  2005年   18篇
  2004年   15篇
  2003年   16篇
  2002年   14篇
  2001年   11篇
  2000年   14篇
  1999年   15篇
  1998年   7篇
  1997年   8篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1991年   10篇
  1990年   11篇
  1988年   8篇
  1987年   6篇
  1986年   8篇
  1985年   6篇
  1984年   3篇
  1983年   5篇
  1981年   9篇
  1979年   7篇
  1978年   10篇
  1977年   3篇
  1973年   7篇
  1972年   3篇
  1971年   4篇
  1970年   3篇
  1968年   3篇
  1967年   3篇
  1908年   4篇
排序方式: 共有541条查询结果,搜索用时 15 毫秒
51.
Land disposal of sewage sludge and effluent is becoming a common practice in the United States. The fertilizer content and humus value of such wastes are useful for agricultural purposes, and the recycling of sewage onto the land eliminates many of our stream pollution problems. The potential exists for crops grown in such irrigated soil to be contaminated by viruses that may be present in the sewage. Studies were initiated to determine viral persistence in soil and on crops grown under natural conditions in field plots that had been flooded to a depth of 1 inch (2.54 cm) with poliovirus 1-inoculated sewage wastes. Lettuce and radishes were planted in sludge- or effluent-flooded soil. In one study, the vegetables were planted 1 day before flooding, and in another they were planted 3 days after the plots were flooded. Survival of poliovirus 1 in soil irrigated with inoculated sewage sludge and effluent was determined during two summer growing seasons and one winter period. The longest period of survival was during the winter, when virus was detected after 96 days. During the summer, the longest survival period was 11 days. Poliovirus 1 was recovered from the mature vegetables 23 days after flooding of the plots had ceased. Lettuce and radishes are usually harvested 3 to 4 weeks after planting.  相似文献   
52.
The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex.  相似文献   
53.
Understanding the role of disease in population regulation is important to the conservation of wildlife. We evaluated the prevalence of Toxoplasma gondii exposure and Sarcocystis spp. infection in 46 road-killed and accidentally trapper-killed fisher (Martes pennanti) carcasses collected and stored at -20 C by the Pennsylvania Game Commission from February 2002 to October 2008. Blood samples were assayed for T. gondii antibodies using the modified agglutination test (MAT, 1 : 25) and an indirect immunofluorescent antibody test (IFAT, 1 : 128). For genetic analysis, DNA samples were extracted from thoracic and pelvic limb skeletal muscle from each carcass to test for Sarcocystis spp. using 18s-rRNA PCR primers. Antibodies to T. gondii were found in 100% (38 of 38) of the fishers tested by MAT and in 71% (32 of 45) of the fishers tested by IFAT. PCR analysis revealed that 83% (38 of 46) of the fishers were positive for Sarcocystis spp. Sequence analysis of 7 randomly chosen amplicons revealed the fisher sarcocysts had a 98.3% to 99.1% identity to several avian Sarcocystis spp. sequences in GenBank. Data from our study suggest that a high percentage of fishers in Pennsylvania have been exposed to T. gondii and are infected with Sarcocystis spp.  相似文献   
54.
55.
The etiology of painful diabetic neuropathy is poorly understood, but may result from neuronal hyperexcitability secondary to alterations of Ca2+ signaling in sensory neurons. The naturally occurring amino acid taurine functions as an osmolyte, antioxidant, Ca2+ modulator, inhibitory neurotransmitter, and analgesic such that its depletion in diabetes may predispose one to neuronal hyperexcitability and pain. This study reports the effects of taurine replacement on hyperalgesia and sensory neuron Ca2+ homeostasis in streptozotocin-diabetic (STZ-D) rats. Nondiabetic and STZ-D rats were treated with a 2% taurine-supplemented diet for 6-12 wk. Thermal hyperalgesia and mechanical allodynia were determined by measuring hindpaw withdrawal latency to radiant heat and the withdrawal threshold to the von Frey anesthesiometer. Intracellular Ca2+ signaling was explored in neurons from L4-L6 dorsal root ganglia (DRG), using fura 2 fluorescence. Taurine replacement of diabetic rats attenuated deficits of nerve conduction and prevented reductions of mechanical and thermal withdrawal threshold and latency, respectively. In small DRG sensory neurons from diabetic rats, recovery of intracellular Ca2+ concentration ([Ca2+]i) in response to KCl was slowed and 73% corrected by taurine. The amplitudes of caffeine and ATP-induced [Ca2+]i transients were decreased by 47 and 27% (P < 0.05), respectively, in diabetic rat DRG sensory neurons and corrected by 74 and 93% (P < 0.05), respectively, by taurine replacement. These data indicate that taurine is important in the regulation of neuronal Ca2+ signaling and that taurine deficiency may predispose one to nerve hyperexcitability and pain, complicating diabetes.  相似文献   
56.
In plants, the accumulation of the chlorophyll precursor Mg-protoporphyrin IX (Mg-Proto) in the plastid regulates the expression of a number of nuclear genes with functions related to photosynthesis. Analysis of the plastid-to-nucleus signaling activity of Mg-Proto in Arabidopsis thaliana led to the discovery of GUN4, a novel porphyrin-binding protein that also dramatically enhances the activity of Mg-chelatase, the enzyme that synthesizes Mg-Proto. GUN4 may also play a role in both photoprotection and the cellular shuttling of tetrapyrroles. Here we report a 1.78-Å resolution crystal structure of Synechocystis GUN4, in which the porphyrin-binding domain adopts a unique three dimensional fold with a “cupped hand” shape. Biophysical and biochemical analyses revealed the specific site of interaction between GUN4 and Mg-Proto and the energetic determinants for the GUN4 • Mg-Proto interaction. Our data support a novel protective function for GUN4 in tetrapyrrole trafficking. The combined structural and energetic analyses presented herein form the physical-chemical basis for understanding GUN4 biological activity, including its role in the stimulation of Mg-chelatase activity, as well as in Mg-Proto retrograde signaling.  相似文献   
57.
NK T (NKT) cells are an important component of the innate immune system and recognize the MHC class I-like CD1d molecule. NKT cells possess significant immunoregulatory activity due to their rapid secretion of large quantities of pro- and anti-inflammatory cytokines following CD1d-dependent stimulation. Because the innate immune system is programmed to respond to a multitude of diverse stimuli and must be able to quickly differentiate between pathogenic and endogenous signals, we hypothesized that, apart from stimulation via the TCR (e.g., CD1d-dependent activation), there must be multiple activation pathways that can be triggered through other cell surface receptors on NKT cells. Therefore, we analyzed the ability of CD44, a structurally diverse cell surface receptor expressed on most cells, to stimulate murine NKT cells, compared with conventional T cells. Stimulation of CD44 through Ab cross-linking or binding to its natural ligands hyaluronan and osteopontin induced NKT cells to secrete cytokines, up-regulate activation markers, undergo morphological changes, and resist activation-induced cell death, whereas conventional T cells only exhibited changes in morphology and protection from activation-induced cell death. This CD44-specific stimulation of NKT cells correlated with their ability to bind hyaluronan. Thus, fundamental differences in CD44 function between these lymphocyte subsets suggest an important biological role for CD44 in the innate immune response.  相似文献   
58.
In this work, we report the X-ray crystal structure of the aerobically isolated (oxidized) and the anaerobic dithionite-reduced (at pH 8.0) forms of the native Azotobacter vinelandii bacterioferritin to 2.7 and 2.0 A resolution, respectively. Iron K-edge multiple anomalous dispersion (MAD) experiments unequivocally identified the presence of three independent iron-containing sites within the protein structure. Specifically, a dinuclear (ferroxidase) site, a b-type heme site, and the binding of a single iron atom at the four-fold molecular axis of the protein shell were observed. In addition to the novel observation of iron at the four-fold pore, these data also reveal that the oxidized form of the protein has a symmetrical ferroxidase site containing two five-coordinate iron atoms. Each iron atom is ligated by four carboxylate oxygen atoms and a single histidyl nitrogen atom. A single water molecule is found within hydrogen bonding distance of the ferroxidase site that bridges the two iron atoms on the side opposite the histidine ligands. Chemical reduction of the protein under anaerobic conditions results in an increase in the average Fe-Fe distance in the ferroxidase site from approximately 3.5 to approximately 4.0 A and the loss of one of the ligands, H130. In addition, there is significant movement of the bridging water molecule and several other amino acid side chains in the vicinity of the ferroxidase site and along the D helix to the three-fold symmetry axis. In contrast to previous work, the higher-resolution data for the dithionite-reduced structure suggest that the heme may be bound in multiple conformations. Taken together, these data allow a molecular movie of the ferroxidase gating mechanism to be developed and provide further insight into the iron uptake and/or release and mineralization mechanism of bacterioferritins in general.  相似文献   
59.
Summary Previously, we have engineered three-dimensional (3-D) skeletal muscle constructs that generate force and display a myosin heavy-chain (MHC) composition of fetal muscle. The purpose of this study was to evaluate the functional characteristics of 3-D skeletal muscle constructs cocultured with fetal nerve explants. We hypothesized that coculture of muscle constructs with neural cells would produce constructs with increased force and adult MHC isoforms. Following introduction of embryonic spinal cord explants to a layer of confluent muscle cells, the neural tissue integrated with the cultured muscle cells to form 3-D muscle constructs with extensions. Immunohistochemical labeling indicated that the extensions were neural tissue and that the junctions between the nerve extensions and the muscle constructs contained clusters of acetylcholine receptors. Compared to muscles cultured without nerve explants, constructs formed from nerve-muscle coculture showed spontaneous contractions with an increase in frequency and force. Upon field stimulation, both twitch (2-fold) and tetanus (1.7-fold) were greater in the nerve-muscle coculture system. Contractions could be elicited by electrically stimulating the neural extensions, although smaller forces are produced than with field stimulation. Severing the extension eliminated the response to electrical stimulation, excluding field stimulation, as a contributing factor. Nervemuscle constructs showed a tendency to have higher contents of adult and lower contents of fetal MHC isoforms, but the differences were not significant. In conclusion, we have successfully engineered a 3-D nerve-muscle construct that displays functional neuromuscular junctions and can be electrically stimulated to contract via the neural extensions projecting from the construct.  相似文献   
60.
Oxidative modification of cellular components may contribute to tissue dysfunction during aging. In skeletal muscle, contractile activity increases the generation of reactive oxygen and nitrogen species (ROS). The question of whether contraction-induced ROS generation is further increased in skeletal muscle of the elderly is important since this influences recommendations on their exercise participation. Three different approaches were used to examine whether aging influences contraction-induced ROS generation. Hind limb muscles of adult and old mice underwent a 15-min period of isometric contractions and we examined ROS generation by isolated skeletal muscle mitochondria, ROS release into the muscle extracellular fluid using microdialysis techniques, and the muscle glutathione and protein thiol contents. Resting skeletal muscle of old mice compared with adult mice showed increased ROS release from isolated mitochondria, but no changes in the extracellular levels of superoxide, nitric oxide, hydrogen peroxide, hydroxyl radical activity or muscle glutathione and protein thiol contents. Skeletal muscle mitochondria isolated from both adult and old mice after contractile activity showed significant increases in hydrogen peroxide release compared with pre-contraction values. Contractions increased extracellular hydroxyl radical activity in adult and old mice, but had no significant effect on extracellular hydrogen peroxide or nitric oxide in either group. In adult mice only, contractile activity increased the skeletal muscle release of superoxide. A similar decrease in muscle glutathione and protein thiol contents was seen in adult and old mice following contractions. Thus, contractile activity increased skeletal muscle ROS generation in both adult and old mice with no evidence for an age-related exacerbation of ROS generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号