首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1457篇
  免费   82篇
  1539篇
  2024年   3篇
  2023年   6篇
  2022年   30篇
  2021年   50篇
  2020年   31篇
  2019年   36篇
  2018年   44篇
  2017年   34篇
  2016年   66篇
  2015年   83篇
  2014年   102篇
  2013年   103篇
  2012年   115篇
  2011年   126篇
  2010年   82篇
  2009年   63篇
  2008年   99篇
  2007年   83篇
  2006年   92篇
  2005年   50篇
  2004年   59篇
  2003年   53篇
  2002年   48篇
  2001年   16篇
  2000年   2篇
  1999年   7篇
  1998年   11篇
  1997年   1篇
  1996年   9篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1963年   1篇
排序方式: 共有1539条查询结果,搜索用时 15 毫秒
111.
Host-choice experiments were carried out with rodent and bat ectoparasites on Ilha Grande, state of Rio de Janeiro, Brazil. We constructed experimental chambers that enclosed three different rodent or bat host species, and then introduced a selected set of ectoparasitic arthropods. When given the opportunity to choose among host species, the ectoparasites showed a strong tendency to select their primary hosts, and reject novel host species. These kinds of simple experiments can be valuable tools for assessing the ability of ectoparasites to locate and discern differences between host species, and make choices about which hosts to infest, and which hosts to avoid.  相似文献   
112.
The oxidative modification of LDL may play an important role in the early events of atherogenesis. Thus the identification of antioxidative compounds may be of therapeutic and prophylactic importance regarding cardiovascular disease. Copper-chlorophyllin (Cu-CHL), a Cu2+-protoporphyrin IX complex, has been reported to inhibit lipid oxidation in biological membranes and liposomes. Hemin (Fe3+-protoporphyrin IX) has been shown to bind to LDL thereby inducing lipid peroxidation. As Cu-CHL has a similar structure as hemin, one may assume that Cu-CHL may compete with the hemin action on LDL. Therefore, in the present study Cu-CHL and the related compound magnesium-chlorophyllin (Mg-CHL) were examined in their ability to inhibit LDL oxidation initiated by hemin and other LDL oxidizing systems. LDL oxidation by hemin in presence of H2O2 was strongly inhibited by both CHLs. Both chlorophyllins were also capable of effectively inhibiting LDL oxidation initiated by transition metal ions (Cu2+), human umbilical vein endothelial cells (HUVEC) and tyrosyl radicals generated by myeloperoxidase (MPO) in presence of H2O2 and tyrosine. Cu- and Mg-CHL showed radical scavenging ability as demonstrated by the diphenylpicrylhydracylradical (DPPH)-radical assay and estimation of phenoxyl radical generated diphenyl (dityrosine) formation. As assessed by ultracentrifugation the chlorophyllins were found to bind to LDL (and HDL) in serum. The present study shows that copper chlorophyllin (Cu-CHL) and its magnesium analog could act as potent antagonists of atherogenic LDL modification induced by various oxidative stimuli. As inhibitory effects of the CHLs were found at concentrations as low as 1 μmol/l, which can be achieved in humans, the results may be physiologically/therapeutically relevant.  相似文献   
113.
The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging.  相似文献   
114.
During Trypanosoma cruzi infection, T cells up-regulate caspase-8 activity. To assess the role of caspase-8 in T cell-mediated immunity, we investigated the effects of caspase-8 inhibition on T cells in viral FLIP (v-FLIP) transgenic mice. Compared with wild-type controls, increased parasitemia was observed in v-FLIP mice infected with T. cruzi. There was a profound decrease in expansion of both CD4 and CD8 T cell subsets in the spleens of infected v-FLIP mice. We did not find differences in activation ratios of T cells from transgenic or wild-type infected mice. However, the numbers of memory/activated CD4 and CD8 T cells were markedly reduced in v-FLIP mice, possibly due to defective survival. We also found decreased production of IL-2 and increased secretion of type 2 cytokines, IL-4 and IL-10, which could enhance susceptibility to infection. Similar, but less pronounced, alterations were observed in mice treated with the caspase-8 inhibitor, zIETD. Furthermore, blockade of caspase-8 by zIETD in vitro mimicked the effects observed on T. cruzi infection in vivo, affecting the generation of activated/memory T cells and T cell cytokine production. Caspase-8 is also required for NF-kappaB signaling upon T cell activation. Blockade of caspase-8 by either v-FLIP expression or treatment with zIETD peptide decreased NF-kappaB responses to TCR:CD3 engagement in T cell cultures. These results suggest a critical role for caspase-8 in the establishment of T cell memory, cell signaling, and regulation of cytokine responses during protozoan infection.  相似文献   
115.
116.
Extensive replicative capacity of human central memory T cells   总被引:3,自引:0,他引:3  
To characterize the replicative capacity of human central memory (T(CM)) CD4 T cells, we have developed a defined culture system optimized for the ex vivo expansion of Ag-specific CD4(+) T cells. Artificial APCs (aAPCs) consisting of magnetic beads coated with Abs to HLA class II and a costimulatory Ab to CD28 were prepared; peptide-charged HLA class II tetramers were then loaded on the beads to provide Ag specificity. Influenza-specific DR*0401 CD4 T(CM) were isolated from the peripheral blood of normal donors by flow cytometry. Peptide-loaded aAPC were not sufficient to induce resting CD4 T(CM) to proliferate. In contrast, we found that the beads efficiently promoted the growth of previously activated CD4 T(CM) cells, yielding cultures with >80% Ag-specific CD4 cells after two stimulations. Further stimulation with peptide-loaded aAPC increased purity to >99% Ag-specific T cells. After in vitro culture for 3-12 wk, the flu-specific CD4 T(CM) had surface markers that were generally consistent with an effector phenotype described for CD8 T cells, except for the maintenance of CD28 expression. The T(CM) were capable of 20-40 mean population doublings in vitro, and the expanded cells produced IFN-gamma, IL-2, and TNF-alpha in response to Ag, and a subset of cells also secreted IL-4 with PMA/ionomycin treatment. In conclusion, aAPCs expand T(CM) that have extensive replicative capacity, and have potential applications in adoptive immunotherapy as well as for studying the biology of human MHC class II-restricted T cells.  相似文献   
117.
Ayala C  Clarke M  Riquelme C 《Biofouling》2006,22(1-2):61-68
Semimytilus algosus is a small mussel species that fouls artificial culture systems of the scallop Argopecten purpuratus (Lamarck, 1819) in the north of Chile. Since biofouling organisms are a serious problem in culture, competing with the scallops for food and oxygen, environmentally-friendly methods are required to mitigate the effects of this fouling in the culture systems. The present study reports the evaluation of the inhibitory effect of biofilms and extracellular products (EP) of the bacterium Alteromonas strain Ni1-LEM on the byssal formation of S. algosus juveniles. Laboratory bioassays were carried out to determine the reattachment, exploratory behaviour and/or byssal thread production of the mussel in plastic Petri dishes containing bacterial biofilms, different dilutions of EP, and EP incorporated in a test substratum. It was concluded from the results that culture supernatants of the Alteromonas tested had an inhibitory effect on reattachment by S. algosus.  相似文献   
118.
We report the cloning of a Trypanosoma cruzi gene encoding a solanesyl-diphosphate synthase, TcSPPS. The amino acid sequence (molecular mass approximately 39 kDa) is homologous to polyprenyl-diphosphate synthases from different organisms, showing the seven conserved motifs and the typical hydrophobic profile. TcSPPS preferred geranylgeranyl diphosphate as the allylic substrate. The final product, as determined by TLC, had nine isoprene units. This suggests that the parasite synthesizes mainly ubiquinone-9 (UQ-9), as described for Trypanosoma brucei and Leishmania major. In fact, that was the length of the ubiquinone extracted from epimastigotes, as determined by high-performance liquid chromatography. Expression of TcSPPS was able to complement an Escherichia coli ispB mutant. A punctuated pattern in the cytoplasm of the parasite was detected by immunofluorescence analysis with a specific polyclonal antibody against TcSPPS. An overlapping fluorescence pattern was observed using an antibody directed against the glycosomal marker pyruvate phosphate dikinase, suggesting that this step of the isoprenoid biosynthetic pathway is located in the glycosomes. Co-localization in glycosomes was confirmed by immunogold electron microscopy and subcellular fractionation. Because UQ has a central role in energy production and in reoxidation of reduction equivalents, TcSPPS is promising as a new chemotherapeutic target.  相似文献   
119.
In this study, we evaluated the cellular influx and cytokine environment in the lungs of mice made immune by prior vaccination with Mycobacterium bovis bacillus Calmette-Guérin compared with control mice after infection with Mycobacterium tuberculosis to characterize composition of protective lesions in the lungs. Immune mice controlled the growth of the M. tuberculosis challenge more efficiently than control mice. In immune animals, granulomatous lesions were smaller and had a more lymphocytic core, less foamy cells, less parenchymal inflammation, and slower progression of lung pathology than in lungs of control mice. During the chronic stage of the infection, the bacterial load in the lungs of immune mice remained at a level 10 times lower than control mice, and this was associated with reduced numbers of CD4P(+P) and CD8P(+P) T cells, and the lower expression of protective (IL-12, IFN-gamma), inflammatory (TNF-alpha), immunoregulatory (GM-CSF), and immunosuppressive (IL-10) cytokines. The immune mice had higher numbers of CD11b- CD11c(high) DEC-205(low) alveolar macrophages, but lower numbers of CD11b+ CD11c(high) DEC-205(high) dendritic cells, with the latter expressing significantly lower levels of the antiapoptotic marker TNFR-associated factor-1. Moreover, during the early stage of chronic infection, lung dendritic cells from immune mice expressed higher levels of MHC class II and CD40 molecules than similar cells from control mice. These results indicate that while a chronic disease state is the eventual outcome in both control and immune mice infected with M. tuberculosis by aerosol exposure, immune mice develop a protective granulomatous lesion by increasing macrophage numbers and reduced expression of protective and inflammatory cytokines.  相似文献   
120.
Hypochlorite (HOCl) attacks amino acid residues in LDL making the particle atherogenic. Tryptophan is prone to free radical reactions and modification by HOCl. We hypothesized, that free tryptophan may quench the HOCl attack therefore protecting LDL. Free tryptophan inhibits LDL apoprotein modification and lipid oxidation. Tryptophan-HOCl metabolites associate with LDL reducing its oxidizability initiated by endothelial cells, Cu(2+) and peroxyl radicals. One tryptophan-HOCl metabolite was identified as 4-methyl-carbostyril which showed antioxidative activity when present during Cu(2+) mediated lipid oxidation, but did not associate with LDL. Indole-3-acetaldehyde, a decomposition product of tryptophan chloramine (the product of the tryptophan-HOCl reaction) was found to associate with LDL increasing its resistance to oxidation. Myeloperoxidase treatment of LDL in the presence of chloride, H(2)O(2) and tryptophan protected the lipoprotein from subsequent cell-mediated oxidation. We conclude that, in vivo, the activated myeloperoxidase system can generate antioxidative metabolites from tryptophan by the reaction of hypochlorite with this essential amino acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号