首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1952篇
  免费   184篇
  2023年   19篇
  2022年   40篇
  2021年   56篇
  2020年   32篇
  2019年   66篇
  2018年   69篇
  2017年   72篇
  2016年   72篇
  2015年   128篇
  2014年   114篇
  2013年   140篇
  2012年   188篇
  2011年   152篇
  2010年   105篇
  2009年   82篇
  2008年   100篇
  2007年   86篇
  2006年   78篇
  2005年   78篇
  2004年   86篇
  2003年   64篇
  2002年   70篇
  2001年   27篇
  2000年   14篇
  1999年   13篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   13篇
  1992年   10篇
  1991年   8篇
  1990年   7篇
  1989年   13篇
  1988年   9篇
  1987年   8篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   5篇
  1979年   8篇
  1977年   7篇
  1975年   5篇
  1974年   4篇
  1973年   7篇
  1972年   3篇
  1969年   3篇
排序方式: 共有2136条查询结果,搜索用时 625 毫秒
91.
92.
Post‐translational modifications (PTMs) have emerged as key modulators of protein phase separation and have been linked to protein aggregation in neurodegenerative disorders. The major aggregating protein in amyotrophic lateral sclerosis and frontotemporal dementia, the RNA‐binding protein TAR DNA‐binding protein (TDP‐43), is hyperphosphorylated in disease on several C‐terminal serine residues, a process generally believed to promote TDP‐43 aggregation. Here, we however find that Casein kinase 1δ‐mediated TDP‐43 hyperphosphorylation or C‐terminal phosphomimetic mutations reduce TDP‐43 phase separation and aggregation, and instead render TDP‐43 condensates more liquid‐like and dynamic. Multi‐scale molecular dynamics simulations reveal reduced homotypic interactions of TDP‐43 low‐complexity domains through enhanced solvation of phosphomimetic residues. Cellular experiments show that phosphomimetic substitutions do not affect nuclear import or RNA regulatory functions of TDP‐43, but suppress accumulation of TDP‐43 in membrane‐less organelles and promote its solubility in neurons. We speculate that TDP‐43 hyperphosphorylation may be a protective cellular response to counteract TDP‐43 aggregation.  相似文献   
93.
Endomembrane glycosylation and cytoplasmic O-GlcNAcylation each play essential roles in nutrient sensing, and characteristic changes in glycan patterns have been described in disease states such as diabetes and cancer. These changes in glycosylation have important functional roles and can drive disease progression. However, little is known about the molecular mechanisms underlying how these signals are integrated and transduced into biological effects. Galectins are proteins that bind glycans and that are secreted by a poorly characterized nonclassical secretory mechanism. Once outside the cell, galectins bind to the terminal galactose residues of cell surface glycans and modulate numerous extracellular functions, such as clathrin-independent endocytosis (CIE). Originating in the cytoplasm, galectins are predicted substrates for O-GlcNAc addition and removal; and as we have shown, galectin 3 is a substrate for O-GlcNAc transferase. In this study, we also show that galectin 3 secretion is sensitive to changes in O-GlcNAc levels. We determined using immunoprecipitation and Western blotting that there is a significant difference in O-GlcNAcylation status between cytoplasmic and secreted galectin 3. We observed dramatic alterations in galectin 3 secretion in response to nutrient conditions, which were dependent on dynamic O-GlcNAcylation. Importantly, we showed that these O-GlcNAc-driven alterations in galectin 3 secretion also facilitated changes in CIE. These results indicate that dynamic O-GlcNAcylation of galectin 3 plays a role in modulating its secretion and can tune its function in transducing nutrient-sensing information coded in cell surface glycosylation into biological effects.  相似文献   
94.
A key challenge in microbiome research is to predict the functionality of microbial communities based on community membership and (meta)-genomic data. As central microbiota functions are determined by bacterial community networks, it is important to gain insight into the principles that govern bacteria-bacteria interactions. Here, we focused on the growth and metabolic interactions of the Oligo-Mouse-Microbiota (OMM12) synthetic bacterial community, which is increasingly used as a model system in gut microbiome research. Using a bottom-up approach, we uncovered the directionality of strain-strain interactions in mono- and pairwise co-culture experiments as well as in community batch culture. Metabolic network reconstruction in combination with metabolomics analysis of bacterial culture supernatants provided insights into the metabolic potential and activity of the individual community members. Thereby, we could show that the OMM12 interaction network is shaped by both exploitative and interference competition in vitro in nutrient-rich culture media and demonstrate how community structure can be shifted by changing the nutritional environment. In particular, Enterococcus faecalis KB1 was identified as an important driver of community composition by affecting the abundance of several other consortium members in vitro. As a result, this study gives fundamental insight into key drivers and mechanistic basis of the OMM12 interaction network in vitro, which serves as a knowledge base for future mechanistic in vivo studies.Subject terms: Microbiome, Microbial ecology  相似文献   
95.
This study describes the modulation of the ouabain-insensitive Na(+)-ATPase activity from renal proximal tubule basolateral membranes (BLM) by protein kinase C (PKC). Two PKC isoforms were identified in BLM, one of 75 kDa and the other of 135 kDa. The former correlates with the PKC isoforms described in the literature but the latter seems to be a novel isoform, not yet identified. Both PKC isoforms of BLM are functional since a protein kinase C activator, TPA, increased the total hydroxylamine-resistant 32P(i) incorporation from [gamma-32P]ATP into the BLM. In parallel, TPA stimulated the Na(+)-ATPase activity from BLM in a dose-dependent manner, the effect being reversed by the PKC inhibitor sphingosine. The stimulatory effect of TPA on Na(+)-ATPase involved an increase in the V(max) (from 13.4+/-0.6 nmol P(i) mg(-1) min(-1) to 25.2+/-1.4 nmol P(i) mg(-1) min(-1), in the presence of TPA, P<0.05) but did not change the apparent affinity for Na(+) (K(0.5)=14.5+/-2.1 mM in control and 10.0+/-2.1 mM in the presence of TPA, P>0.07). PKC involvement was further confirmed by stimulation of the Na(+)-ATPase activity by the catalytic subunit of PKC (PKC-M). Finally, the phosphorylation of an approx. 100 kDa protein in the BLM (the suggested molecular mass of Na(+)-ATPase [1]) was induced by TPA. Taken together, these findings indicate that PKCs resident in BLM stimulate Na(+)-ATPase activity which could represent an important mechanism of regulation of proximal tubule Na(+) reabsorption.  相似文献   
96.
In vivo phosphorylation of PEPC in Egeria densa was studied using plants at high temperature and in light, and plants kept at low temperature and in light. The isoform induced by high temperature and light was more phosphorylated in the light. Changes in kinetic and regulatory properties correlated with changes in the phosphorylation state of PEPC.  相似文献   
97.
The evolution of an ichthiotoxic algal bloom caused by the dinoflagellate Cochlodinium catenatum was studied from July to December 2000. The abnormal multiplication of this dinoflagellate occurred in the form of a discoloration spreading between a temperature and salinity interval of 25-32 degrees C and 33-35 ups, respectively. The density of C. catenatum reached 10 841 cells ml(-1). The event was observed in large areas of Banderas Bay affecting 13 fish species, whose massive killing was due to suffocation (gill obstruction and excessive mucus production). The human population around the area did not present respiratory affections or skin irritation. The C. catenatum measurements suggest a hologamic and heterothalic reproduction. Their morphological characteristics suggest that C. polykrikoides, C. heterolobatum and C. catenatum are the same species. It is estimated that the species could be a recent introduction in the Mexican Pacific.  相似文献   
98.
Gene-targeted mice were used to evaluate the role of the gamma isoform of phosphoinositide 3-kinase (PI3Kgamma) in dendritic cell (DC) migration and induction of specific T-cell-mediated immune responses. DC obtained from PI3Kgamma-/- mice showed a reduced ability to respond to chemokines in vitro and ex vivo and to travel to draining lymph nodes under inflammatory conditions. PI3Kgamma-/- mice had a selective defect in the number of skin Langerhans cells and in lymph node CD8alpha- DC. Furthermore, PI3Kgamma-/- mice showed a defective capacity to mount contact hypersensitivity and delayed-type hypersensitivity reactions. This defect was directly related to the reduced ability of antigen-loaded DC to migrate from the periphery to draining lymph nodes. Thus, PI3Kgamma plays a nonredundant role in DC trafficking and in the activation of specific immunity. Therefore, PI3Kgamma may be considered a new target to control exaggerated immune reactions.  相似文献   
99.
Numerous physiological parameters, such as metabolic rate and glomerular filtration rate (GFR), are allometrically related to body mass. Whereas the interspecific relationships between metabolic rate and body mass have been extensively studied in vertebrates, intraspecific studies of renal function have been limited. Therefore, kidney function was studied in 16 green iguanas, (Iguana iguana; 322-4764 g), by using nuclear scintigraphy to measure the renal uptake of 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA), following either intravenous or intraosseous administration. Route of 99mTc-DTPA administration did not affect the percentage of the dose that accumulated in the kidney (P > 0.05). Renal uptake of 99mTc-DTPA was related to body mass (W, g) as: %Dose Kidney (min-1) = 11.09W(-0.235). Although not directly measured, the apparent renal clearance of 99mTc-DTPA could be described as: Renal CL 99mTc-DTPA (ml.min-1) = 0.005W(0.759), and the mass exponent did not differ from either the 2/3 or 3/4 values (P > 0.05). The similarity of the mass exponents relating both renal function and metabolic rate to body mass suggests a common mechanism underlying these allometric relationships. As this study also demonstrated that renal scintigraphy can be used to quantify kidney function in iguanas, this technique may be a useful research and diagnostic tool.  相似文献   
100.
This review focuses on the potential of yeast killer toxin (KT)-like antibodies (KTAbs), that mimic a wide-spectrum KT through interaction with specific cell wall receptors (KTR) and their molecular derivatives (killer mimotopes), as putative new tools for transdisease anti-infective therapy. KTAbs are produced during the course of experimental and natural infections caused by KTR-bearing micro-organisms. They have been produced by idiotypic vaccination with a KT-neutralizing mAb, also in their monoclonal and recombinant formats. KTAbs and KTAbs-derived mimotopes may exert a strong therapeutic activity against mucosal and systemic infections caused by eukaryotic and prokaryotic pathogenic agents, thus representing new potential wide-spectrum antibiotics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号