首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2730篇
  免费   293篇
  3023篇
  2023年   24篇
  2022年   47篇
  2021年   68篇
  2020年   38篇
  2019年   68篇
  2018年   77篇
  2017年   81篇
  2016年   83篇
  2015年   161篇
  2014年   134篇
  2013年   159篇
  2012年   227篇
  2011年   183篇
  2010年   122篇
  2009年   98篇
  2008年   135篇
  2007年   111篇
  2006年   107篇
  2005年   100篇
  2004年   95篇
  2003年   77篇
  2002年   86篇
  2001年   59篇
  2000年   32篇
  1999年   30篇
  1998年   17篇
  1997年   13篇
  1996年   18篇
  1995年   19篇
  1993年   21篇
  1992年   32篇
  1991年   36篇
  1990年   29篇
  1989年   37篇
  1988年   35篇
  1987年   26篇
  1986年   22篇
  1985年   23篇
  1984年   22篇
  1983年   24篇
  1982年   13篇
  1979年   13篇
  1978年   11篇
  1977年   16篇
  1975年   14篇
  1974年   13篇
  1973年   17篇
  1972年   21篇
  1971年   12篇
  1970年   19篇
排序方式: 共有3023条查询结果,搜索用时 20 毫秒
121.
Insect disease vectors show diminished fecundity when infected with Plasmodium. This phenomenon has already been demonstrated in laboratory models such as Aedes aegypti, Anopheles gambiae and Anopheles stephensi. This study demonstrates several changes in physiological processes of A. aegypti occurring upon infection with Plasmodium gallinaceum, such as reduced ecdysteroid levels in hemolymph as well as altered expression patterns for genes involved in vitellogenesis, lipid transport and immune response. Furthermore, we could show that P. gallinaceum infected A. aegypti presented a reduction in reproductive fitness, accompanied by an activated innate immune response and increase in lipophorin expression, with the latter possibly representing a nutritional resource for Plasmodium sporozoites.  相似文献   
122.
To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2 on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade‐offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO2 on four hypothesized trade‐offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade‐off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO2 exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO2. In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO2 in two out of four milkweed species. Finally, previous exposure to elevated CO2 uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade‐offs.  相似文献   
123.
Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype’s baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a higher plasticity to nitrogen addition, and potentially an advantage when adapting to higher concentrations of soil nitrogen.  相似文献   
124.
This review summarizes recent highlights of our joint work on the structure, evolution, and function of a family of highly complex proteins, the hemocyanins. They are blue-pigmented oxygen carriers, occurring freely dissolved in the hemolymph of many arthropods and molluscs. They are copper type-3 proteins and bind one dioxygen molecule between two copper atoms in a side-on coordination. They possess between 6 and 160 oxygen-binding sites, and some of them display the highest molecular cooperativity observed in nature. The functional properties of hemocyanins can be convincingly described by either the Monod-Wyman-Changeux (MWC) model or its hierarchical extension, the Nested MWC model; the latter takes into account the structural hierarchies in the oligomeric architecture. Recently, we applied these models to interpret the influence of allosteric effectors in detailed terms. Effectors shift the allosteric equilibria but have no influence on the oxygen affinities characterizing the various conformational states. We have shown that hemocyanins from species living at different environmental temperatures have a cooperativity optimum at the typical temperature of their natural habitat. Besides being oxygen carriers, some hemocyanins function as a phenoloxidase (tyrosinase/catecholoxidase) which, however, requires activation. Chelicerates such as spiders and scorpions lack a specific phenoloxidase, and in these animals activated hemocyanin might catalyse melanin synthesis in vivo. We propose a similar activation mechanism for arthropod hemocyanins, molluscan hemocyanins and tyrosinases: amino acid(s) that sterically block the access of phenolic compounds to the active site have to be removed. The catalysis mechanism itself can now be explained on the basis of the recently published crystal structure of a tyrosinase. In a series of recent publications, we presented the complete gene and primary structure of various hemocyanins from different molluscan classes. From these data, we deduced that the molluscan hemocyanin molecule evolved ca. 740 million years ago, prior to the separation of the extant molluscan classes. Our recent advances in the 3D cryo-electron microscopy of hemocyanins also allow considerable insight into the oligomeric architecture of these proteins of high molecular mass. In the case of molluscan hemocyanin, the structure of the wall and collar of the basic decamers is now rapidly becoming known in greater detail. In the case of arthropod hemocyanin, a 10-? structure and molecular model of the Limulus 8 × 6mer shows the amino acids at the various interfaces between the eight hexamers, and reveals histidine-rich residue clusters that might be involved in transferring the conformational signals establishing cooperative oxygen binding.  相似文献   
125.
126.
Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.  相似文献   
127.
Determination of intracellular nitrate.   总被引:2,自引:0,他引:2       下载免费PDF全文
A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans.  相似文献   
128.
Persons with spinal cord injury (SCI) are at a heightened risk of developing type II diabetes and cardiovascular disease. The purpose of this investigation was to conduct an analysis of metabolic, body composition, and neurological factors before and after 10 weeks of functional electrical stimulation (FES) cycling in persons with SCI. Eighteen individuals with SCI received FES cycling 2–3 times per week for 10 weeks. Body composition was analyzed by dual X-ray absorptiometry. The American Spinal Injury Association (ASIA) neurological classification of SCI test battery was used to assess motor and sensory function. An oral glucose tolerance (OGTT) and insulin-response test was performed to assess blood glucose control. Additional metabolic variables including plasma cholesterol (total-C, HDL-C, LDL-C), triglyceride, and inflammatory markers (IL-6, TNF-α, and CRP) were also measured. Total FES cycling power and work done increased with training. Lean muscle mass also increased, whereas, bone and adipose mass did not change. The ASIA motor and sensory scores for the lower extremity significantly increased with training. Blood glucose and insulin levels were lower following the OGTT after 10 weeks of training. Triglyceride levels did not change following training. However, levels of IL-6, TNF-α, and CRP were all significantly reduced.  相似文献   
129.

Background  

Confocal microscopy is a widely employed methodology in cellular biology, commonly used for investigating biological organization at the cellular and sub-cellular level. Most basic confocal microscopes are equipped to cleanly discriminate no more than four fluorophores in a given sample, limiting the utility of this method for co-localization, co-expression, and other multi-parameter analyses. In this study, we evaluated the use of red and near-infrared emitting quantum dot staining reagents to expand the multi-parameter capabilities of basic confocal microscopes.  相似文献   
130.
To better understand the role of nitric oxide (NO) in mammal development, specifically in the transition of the fetal stages at birth, we studied the timing of cell-specific expression of inducible NO synthase (iNOS) isoform during gestational periods of rats, mainly at the late stages of intra-uterine development. Before experimentation, the samples were collected (from 17th to 21st gestational days), fixed in 10% buffered formalin and embedded in paraffin for histological procedures. Hereafter, the sections (5 μm thickness) obtained from different embryos were immunostained by avidin–biotin–immunoperoxidase technique, by using antibody against iNOS isoform. The most of cell immunopositive was suggestive of granulocyte-like cells and those cells were resident close to the blood vessels in different organs, such as: lung, liver or bone marrow environment. Sometimes we noted immunopositive cells in the blood flow, as reported in the thymus. In agreement, iNOS expression, obtained by western blotting analysis, showed the same profile. Together, our data shows that iNOS expression increased gradually during the late stages of rat development (from E17 to E21) and it was executed by cells close to blood vessels. Thus, we can clearly to predict that this expression was finely modulated and it contributes for time-line dependent NO production during rat late development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号