首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2596篇
  免费   322篇
  2023年   23篇
  2022年   48篇
  2021年   68篇
  2020年   39篇
  2019年   70篇
  2018年   72篇
  2017年   74篇
  2016年   85篇
  2015年   152篇
  2014年   140篇
  2013年   163篇
  2012年   221篇
  2011年   179篇
  2010年   131篇
  2009年   97篇
  2008年   126篇
  2007年   111篇
  2006年   102篇
  2005年   111篇
  2004年   118篇
  2003年   87篇
  2002年   100篇
  2001年   54篇
  2000年   40篇
  1999年   33篇
  1998年   23篇
  1997年   22篇
  1996年   18篇
  1995年   9篇
  1994年   17篇
  1993年   25篇
  1992年   23篇
  1991年   24篇
  1990年   22篇
  1989年   31篇
  1988年   24篇
  1987年   12篇
  1986年   17篇
  1985年   17篇
  1984年   12篇
  1983年   9篇
  1982年   15篇
  1980年   10篇
  1978年   10篇
  1977年   12篇
  1976年   8篇
  1975年   8篇
  1974年   8篇
  1973年   12篇
  1972年   8篇
排序方式: 共有2918条查询结果,搜索用时 15 毫秒
81.
82.
In stratified lakes, dominance of the phytoplankton by cyanobacteria is largely the result of their buoyancy and depth regulation. Bloom-forming cyanobacteria regulate the gas vesicle and storage polymer contents of their cells in response to interactive environmental factors, especially light and nutrients. While research on the roles of nitrogen and phosphorus in cyanobacterial buoyancy regulation has reached a consensus, evaluations of the roles of carbon have remained open to dispute. We investigated the various effects of changes in carbon availability on cyanobacterial buoyancy with continuous cultures of Microcystis aeruginosa Kuetz. emend. Elenkin (1924), a notorious bloom-former. Although CO2 limitation of photosynthesis can promote buoyancy in the short term by preventing the collapse of turgor-sensitive gas vesicles and/or by limiting polysaccharide accumulation, we found that sustained carbon limitation restricts buoyancy regulation by limiting gas vesicle as well as polysaccharide synthesis. These results provide an explanation for the positive effects of bicarbonate enrichment on cyanobacterial nitrogen uptake and bloom formation in lake experiments and may help to explain the pattern of cyanobacterial dominance in phosphorus-enriched, low-carbon lakes.  相似文献   
83.
84.
Low electron/proton conductivities of electrochemical catalysts, especially earth‐abundant nonprecious metal catalysts, severely limit their ability to satisfy the triple‐phase boundary (TPB) theory, resulting in extremely low catalyst utilization and insufficient efficiency in energy devices. Here, an innovative electrode design strategy is proposed to build electron/proton transport nanohighways to ensure that the whole electrode meets the TPB, therefore significantly promoting enhance oxygen evolution reactions and catalyst utilizations. It is discovered that easily accessible/tunable mesoporous Au nanolayers (AuNLs) not only increase the electrode conductivity by more than 4000 times but also enable the proton transport through straight mesopores within the Debye length. The catalyst layer design with AuNLs and ultralow catalyst loading (≈0.1 mg cm?2) augments reaction sites from 1D to 2D, resulting in an 18‐fold improvement in mass activities. Furthermore, using microscale visualization and unique coplanar‐electrode electrolyzers, the relationship between the conductivity and the reaction site is revealed, allowing for the discovery of the conductivity‐determining and Debye‐length‐determining regions for water splitting. These findings and strategies provide a novel electrode design (catalyst layer + functional sublayer + ion exchange membrane) with a sufficient electron/proton transport path for high‐efficiency electrochemical energy conversion devices.  相似文献   
85.
Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a distinct telomeric chromatin environment is a major requirement for the folding of yeast telomeres. We demonstrate that telomeres are not folded when cells enter replicative senescence, which occurs independently of short telomere length. Indeed, Sir2, Sin3 and Set2 protein levels are decreased during senescence and their absence may thereby prevent telomere folding. Additionally, we show that the homologous recombination machinery, including the Rad51 and Rad52 proteins, as well as the checkpoint component Rad53 are essential for establishing the telomere fold-back structure. This study outlines a method to interrogate telomere-subtelomere interactions at a single unmodified yeast telomere. Using this method, we provide insights into how the spatial arrangement of the chromosome end structure is established and demonstrate that telomere folding is compromised throughout replicative senescence.  相似文献   
86.
Predation and brood parasitism are common reasons for nesting failure in passerine species and the additive impact by invasive species is a major conservation concern, particularly on tropical islands. Recognising the relative contribution of the different components of nesting failure rates is important to understand co-evolutionary interactions within brood parasite–host systems. In the remote archipelago of New Caledonia, the fan-tailed gerygone Gerygone flavolateralis is the exclusive host of the brood-parasitic shining bronze-cuckoo Chalcites lucidus. Additionally, invasive rodents also possibly have an impact on breeding success. To estimate the impact of potential nest predators, we 1) video monitored nests to identify predators, 2) estimated the probability of predation based on nest visibility and predator abundance and 3) tested the possibility that the location of experimental nests and lack of odour cues decrease the predation by rodents. In addition, we estimated nest survival rates using data collected in different habitats over the course of eight breeding seasons. Nesting success of fan-tailed gerygones was relatively low and predation was the main cause of nesting failure. We recorded mainly predation by native birds, including the shining bronze-cuckoo, whereas predation by rats was rare. In open habitats predation by cuckoos was much lower than predation by other avian predators. Neither predator activity around nests nor nest visibility influenced the probability of predation. Experimental nests in more accessible locations and containing an odorous bait were more exposed to rodent predation. Apparently, the fan-tailed gerygone has either never been specifically vulnerable to predation by rats or has developed anti-predator adaptations.  相似文献   
87.
88.
In recent years, High-Throughput Sequencing (HTS) based methods to detect mutations in biotherapeutic transgene products have become a key quality step deployed during the development of manufacturing cell line clones. Previously we reported on a higher throughput, rapid mutation detection method based on amplicon sequencing (targeting transgene RNA) and detailed its implementation to facilitate cell line clone selection. By gaining experience with our assay in a diverse set of cell line development programs, we improved the computational analysis as well as experimental protocols. Here we report on these improvements as well as on a comprehensive benchmarking of our assay. We evaluated assay performance by mixing amplicon samples of a verified mutated antibody clone with a non-mutated antibody clone to generate spike-in mutations from ∼60% down to ∼0.3% frequencies. We subsequently tested the effect of 16 different sample and HTS library preparation protocols on the assay's ability to quantify mutations and on the occurrence of false-positive background error mutations (artifacts). Our evaluation confirmed assay robustness, established a high confidence limit of detection of ∼0.6%, and identified protocols that reduce error levels thereby significantly reducing a source of false positives that bottlenecked the identification of low-level true mutations.  相似文献   
89.
Reproducibility and reusability of the results of data-based modeling studies are essential. Yet, there has been—so far—no broadly supported format for the specification of parameter estimation problems in systems biology. Here, we introduce PEtab, a format which facilitates the specification of parameter estimation problems using Systems Biology Markup Language (SBML) models and a set of tab-separated value files describing the observation model and experimental data as well as parameters to be estimated. We already implemented PEtab support into eight well-established model simulation and parameter estimation toolboxes with hundreds of users in total. We provide a Python library for validation and modification of a PEtab problem and currently 20 example parameter estimation problems based on recent studies.  相似文献   
90.
Schistosomiasis, a neglected tropical disease caused by Schistosoma species, harms over 250 million people in several countries. The treatment is achieved with only one drug, praziquantel. Cardamonin, a natural chalcone with in vitro schistosomicidal activity, has not been in vivo evaluated against Schistosoma. In this work, we evaluated the in vivo schistosomicidal activities of cardamonin against Schistosoma mansoni worms and conducted enzymatic apyrase inhibition assay, as well as molecular docking analysis of cardamonin against potato apyrase, S. mansoni NTPDase 1 and S. mansoni NTPDase 2. In a mouse model of schistosomiasis, the oral treatment with cardamonin (400 mg/kg) showed efficacy against S. mansoni, decreasing the total worm load in 46.8 % and reducing in 54.5 % the number of eggs in mice. Cardamonin achieved a significant inhibition of the apyrase activity and the three-dimensional structure of the potato apyrase, obtained by homology modeling, showed that cardamonin may interact mainly through hydrogen bonds. Molecular docking studies corroborate with the action of cardamonin in binding and inhibiting both potato apyrase and S. mansoni NTPDases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号