首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   38篇
  国内免费   17篇
  2023年   5篇
  2022年   13篇
  2021年   8篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2017年   8篇
  2016年   11篇
  2015年   16篇
  2014年   18篇
  2013年   23篇
  2012年   22篇
  2011年   24篇
  2010年   26篇
  2009年   19篇
  2008年   18篇
  2007年   21篇
  2006年   13篇
  2005年   19篇
  2004年   6篇
  2003年   16篇
  2002年   13篇
  2001年   17篇
  2000年   16篇
  1999年   10篇
  1998年   14篇
  1997年   6篇
  1996年   7篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   2篇
  1991年   6篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   7篇
  1985年   4篇
  1982年   5篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1973年   4篇
  1970年   2篇
  1967年   2篇
  1966年   7篇
  1964年   2篇
  1962年   1篇
  1956年   1篇
排序方式: 共有475条查询结果,搜索用时 15 毫秒
331.
beta-Arrestins are multifunctional proteins identified on the basis of their ability to bind and uncouple G protein-coupled receptors (GPCR) from heterotrimeric G proteins. In addition, beta-arrestins play a central role in mediating GPCR endocytosis, a key regulatory step in receptor resensitization. In this study, we visualize the intracellular trafficking of beta-arrestin2 in response to activation of several distinct GPCRs including the beta2-adrenergic receptor (beta2AR), angiotensin II type 1A receptor (AT1AR), dopamine D1A receptor (D1AR), endothelin type A receptor (ETAR), and neurotensin receptor (NTR). Our results reveal that in response to beta2AR activation, beta-arrestin2 translocation to the plasma membrane shares the same pharmacological profile as described for receptor activation and sequestration, consistent with a role for beta-arrestin as the agonist-driven switch initiating receptor endocytosis. Whereas redistributed beta-arrestins are confined to the periphery of cells and do not traffic along with activated beta2AR, D1AR, and ETAR in endocytic vesicles, activation of AT1AR and NTR triggers a clear time-dependent redistribution of beta-arrestins to intracellular vesicular compartments where they colocalize with internalized receptors. Activation of a chimeric AT1AR with the beta2AR carboxyl-terminal tail results in a beta-arrestin membrane localization pattern similar to that observed in response to beta2AR activation. In contrast, the corresponding chimeric beta2AR with the AT1AR carboxyl-terminal tail gains the ability to translocate beta-arrestin to intracellular vesicles. These results demonstrate that the cellular trafficking of beta-arrestin proteins is differentially regulated by the activation of distinct GPCRs. Furthermore, they suggest that the carboxyl-tail of the receptors might be involved in determining the stability of receptor/betaarrestin complexes and cellular distribution of beta-arrestins.  相似文献   
332.
333.
G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.  相似文献   
334.
335.
336.
We have previously shown that the ADP-ribosylation factor 6 (ARF6), a small GTP-binding protein, is important for the internalization of several G protein-coupled receptors. Here, we propose to elucidate the molecular steps controlled by ARF6 in the endocytic process of the angiotensin II type 1 receptor (ATR), a model receptor being internalized via the clathrin-coated vesicle pathway. In HEK 293 cells, angiotensin II stimulation leads to the formation of a complex including ARF6, the beta-subunit of AP-2 and the heavy chain of clathrin. In vitro experiments indicate that the interactions between ARF6 and the beta-subunit of AP-2 as well as with the heavy chain of clathrin are direct, and dependent upon the nature of the nucleotide bound to ARF6. beta2-adaptin binds to ARF6-GDP while clathrin preferentially interacts with ARF6 when loaded with GTP. These interactions have an important physiological consequence. Indeed, depletion of ARF6 prevents the agonist-dependent recruitment of beta2-adaptin and clathrin to the activated ATR. Interestingly, in these cells, the plasma membrane redistribution of either beta2-adaptin-GFP or betaarrestin 2-GFP, following Ang II stimulation, is altered. Both proteins are defective in clustering into large punctated structure at the plasma membrane compared to control conditions. Taken together, these results suggest that the cycling of ARF6 between its GDP-and GTP-bound states coordinates the recruitment of AP-2 and clathrin to activated receptors during the endocytic process.  相似文献   
337.
338.
339.
340.
Freshwater eels (Anguilla sp.) have large economic, cultural, ecological and aesthetic importance worldwide, but they suffered more than 90% decline in global stocks over the past few decades. Proper genetic resources, such as sequenced, assembled and annotated genomes, are essential to help plan sustainable recoveries by identifying physiological, biochemical and genetic mechanisms that caused the declines or that may lead to recoveries. Here, we present the first sequenced genome of the American eel. This genome contained 305 043 contigs (N50 = 7397) and 79 209 scaffolds (N50 = 86 641) for a total size of 1.41 Gb, which is in the middle of the range of previous estimations for this species. In addition, protein‐coding regions, including introns and flanking regions, are very well represented in the genome, as 95.2% of the 458 core eukaryotic genes and 98.8% of the 248 ultra‐conserved subset were represented in the assembly and a total of 26 564 genes were annotated for future functional genomics studies. We performed a candidate gene analysis to compare three genes among all three freshwater eel species and, congruent with the phylogenetic relationships, Japanese eel (A. japanica) exhibited the most divergence. Overall, the sequenced genome presented in this study is a crucial addition to the presently available genetic tools to help guide future conservation efforts of freshwater eels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号