首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   13篇
  2021年   2篇
  2015年   1篇
  2013年   3篇
  2012年   3篇
  2009年   4篇
  2006年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   8篇
  1988年   5篇
  1987年   2篇
  1986年   9篇
  1985年   8篇
  1984年   4篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
91.
Carboxyl methylation of platelet ras-related proteins, known as rap proteins, was investigated in this study. Platelet membrane proteins of Mr 23,000 incorporated radioactivity in the presence of S-[methyl-3H]adenosylmethionine and platelet cytosol. About 97% of the radioactivity present in the Mr 23,000 proteins was liberated as volatile methanol under basic (1 M sodium hydroxide) conditions. Cycloheximide, an inhibitor of protein synthesis, inhibited incorporation of S-[methyl-3H]adenosylmethionine by 25%. These results suggest that at least 75% of the radioactivity present in the Mr 23,000 proteins is due to carboxyl methylation and not due to the incorporation of S-[methyl-3H]adenosylmethionine into proteins or due to the incorporation of base-stable methyl groups into side chains of arginine, histidine, or lysine residues. Protein methylation did not occur if membranes or cytosol alone was incubated with S-[methyl-3H]adenosylmethionine. Guanosine 5'(3-O-thio)triphosphate increased methylation of the Mr 23,000 proteins in a time- and concentration-dependent manner. Acetyl-farnesylcysteine, a synthetic substrate for carboxyl methyltransferases, completely blocked methylation of the Mr 23,000 membrane proteins. On the basis of one- and two-dimensional Western blots using rap-specific antisera, the Mr 23,000 methylated proteins were identified as rap1 proteins. The existence of the carboxyl-terminal CAAX motif in rap1 proteins, similar to the CAAX motif present in p21ras as well as in the yeast mating factors, leads us to suggest that methylation of rap1 proteins possibly occurs at the alpha-carboxyl-terminal cysteine.  相似文献   
92.
Stimulation of washed human platelets with alpha-thrombin was accompanied by aggregation, formation of inositol phosphates and phosphatidic acid, liberation of arachidonic acid, mobilization of intracellular Ca2+ stores, and influx of Ca2+ from the extracellular medium. Each of these responses was potentiated by a short pretreatment with epinephrine, although alone this agent was ineffective. A prolonged (5 min) stimulation with alpha-thrombin desensitized both phospholipase C and Ca2+ mobilization to a further thrombin challenge. Epinephrine added following thrombin desensitization restored both the ability of thrombin to release Ca2+ stores and stimulate inositol phospholipid hydrolysis. Resensitization was mediated by alpha 2-adrenergic receptors and lasted about 3 min, after which the Ca2+ levels returned again to basal levels. Pretreatment of platelets with phorbol dibutyrate at concentrations which specifically activate protein kinase C increased the rate of desensitization of the thrombin-induced release of Ca2+ stores and abolished the ability of epinephrine to restore the thrombin response. The protein kinase C inhibitor, staurosporine, blocked the inhibitory effect of phorbol ester and also reduced the rate of desensitization of thrombin and subsequent epinephrine action. These results suggest that thrombin activation of protein kinase C phosphorylates and inactivates a signaling protein which is common to both thrombin and alpha 2-adrenergic receptors. This protein is involved in thrombin stimulation of phospholipase C but is not directly stimulatory since epinephrine alone does not activate this enzyme. We searched for a known second messenger protein common to both thrombin and alpha 2-adrenergic receptors which was phosphorylated in intact platelets by protein kinase C in parallel with thrombin-induced desensitization. The alpha subunit of the inhibitory GTP-binding protein, Gi, was the only candidate which fulfilled all of these criteria as shown by immunoprecipitation. Therefore, we suggest that alpha i maintains the thrombin receptor in a state which can couple to phospholipase C when activated with thrombin. This permissive state of alpha i is blocked by phosphorylation by thrombin-activated protein kinase C.  相似文献   
93.
Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning.  相似文献   
94.
Cellular Adaptive Responses to Low Oxygen Tension: Apoptosis and Resistance   总被引:1,自引:0,他引:1  
Oxygen plays such a critical role in the central nervous system that a specialized mechanism of oxygen delivery to neurons is required. Reduced oxygen tension, or hypoxia, may have severe detrimental effects on neuronal cells. Several studies suggest that hypoxia can induce cellular adaptive responses that overcome apoptotic signals in order to minimize hypoxic injury or damage. Adaptive responses of neuronal cells to hypoxia may involve activation of various ion channels, as well as induction of specific gene expression. For example, ATP sensitive K+ channels are activated by hypoxia in selective neuronal cells, and may play a role in cell survival during hypoxia/anoxia. Additionally, hypoxia-induced c-Jun, bFGF and NGF expression appear to be associated with prevention (or delay) of neuronal cell apoptosis. In this paper, these adaptive responses to hypoxia in neuronal cells are discussed to examine the possible role of hypoxia in pathophysiology of diseases.  相似文献   
95.
The aim of the present study was to analyse the usefulness of the 6-20 rating of perceived exertion (RPE) scale for prescribing and self-regulating high-intensity interval training (HIT) in young individuals. Eight healthy young subjects (age = 27.5±6.7 years) performed maximal graded exercise testing to determine their maximal and reserve heart rate (HR). Subjects then performed two HIT sessions (20 min on a treadmill) prescribed and regulated by their HR (HR: 1 min at 50% alternated with 1 min at 85% of reserve HR) or RPE (RPE: 1 minute at the 9-11 level [very light-fairly light] alternated with 1 minute at the 15-17 level [hard-very hard]) in random order. HR response and walking/running speed during the 20 min of exercise were compared between sessions. No significant difference between sessions was observed in HR during low- (HR: 135±15 bpm; RPE: 138±20 bpm) and high-intensity intervals (HR: 168±15 bpm; RPE: 170±18 bpm). Walking/running speed during low- (HR: 5.7±1.2 km · h−1; RPE: 5.7±1.3 km · h−1) and high-intensity intervals (HR: 7.8±1.9 km · h−1; RPE: 8.2±1.7 km · h−1) was also not different between sessions. No significant differences were observed in HR response and walking/running speed between HIT sessions prescribed and regulated by HR or RPE. This finding suggests that the 6-20 RPE scale may be a useful tool for prescribing and self-regulating HIT in young subjects.  相似文献   
96.
The effect of phorbol 12,13-dibutyrate on the formation of phosphatidylinositol 3,4-bisphosphate in washed human platelets was studied. Platelets labelled with [32P]Pi were stimulated with phorbol 12,13-dibutyrate or thrombin in the presence or absence of staurosporine. Lipids were extracted, and deacylated, and the glycerophosphoinositol derivatives were analyzed by high performance liquid chromatography. Phorbol 12,13-dibutyrate increased formation of phosphatidylinositol 4-monophosphate and phosphatidylinositol 3,4-bisphosphate in a dose- and time-dependent manner. Thrombin also increased formation of phosphatidylinositol 3,4-bisphosphate. Staurosporine completely inhibited phorbol 12,13-dibutyrate or thrombin-stimulated production of phosphatidylinositol 3,4-bisphosphate. These data indicate that production of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 4-monophosphate is mediated by protein kinase C. It is widely recognized that production of phosphatidylinositol 3,4-bisphosphate is caused by the tyrosine kinase-mediated activation of phosphatidylinositol 3-kinase. However, in platelets, production of phosphatidylinositol 3,4-bisphosphate might be related to stimulation of phosphatidylinositol 4-kinase, which is activated by protein kinase C.  相似文献   
97.
1,2-Diacylglycerol has recently been reported to potentiate the ability of phospholipases A and C to hydrolyze phospholipids in a cell-free system. The present study has been undertaken to investigate whether 1,2-diacylglycerol can also perform this function in intact cells using the platelet as a test system. Exogenous 1-oleoyl-2-acetyl-glycerol ( OAG ) and 1,2- didecanoylglycerol , at concentrations sufficient to produce maximal phosphorylation of a 40,000 dalton protein, caused no significant formation of [3H]inositol phosphates and [32P]phosphatidic acid (products of phospholipase C activation) or [14C]arachidonic acid metabolites and lysophosphatidyl[3H]inositol (products of phospholipase A2 activation). These data therefore imply that 1,2-diacylglycerols do not potentiate the actions of phospholipases A2 and C in intact platelets at concentrations that are physiologically relevant.  相似文献   
98.
Saponin (5 to 25 micrograms/ml) produced a concentration-dependent decrease in the cellular content of total ATP and [32P]ATP in 32P-labeled human platelets. In platelets whose ATP had been profoundly decreased by saponin, Ca2+ produced phosphomonoesteratic cleavage of the polyphosphoinositides with a concomitant accumulation of phosphatidylinositol. Collagen still induced secretion of serotonin in platelets that had been treated with saponin in the presence or absence of Ca2+. This effect of collagen occurred in the absence of the formation of cyclooxygenase metabolites. In platelet permeabilized with saponin, agonist-induced secretion and aggregation seems to be unrelated to protein phosphorylation, breakdown of the inositol phospholipids by phospholipase C and formation of cyclooxygenase metabolites.  相似文献   
99.
Degradation of inositides induced by phospholipase C in activated platelets leads to the formation of 1,2-diacylglycerol (1,2-DG) and its phosphorylated product, phosphatidic acid (PA). We have studied the relationship between activation of phospholipase C and the appearance of specific platelet responses, such as phosphorylation of proteins, shape change, release reaction and aggregation induced by different stimuli such as thrombin, platelet-activating factor, collagen, arachidonic acid (AA) and dihomogamma linolenic acid. A low degree of platelet activation induces only shape change which is associated with partial activation of phospholipase C (formation of phosphatidic acid), and phosphorylation of both a 40K molecular weight protein (protein kinase C activation) and a 20K molecular weight protein (myosin light chain). A higher degree of platelet activation induces aggregation, release of serotonin and a higher level of phospholipase C and protein kinase C activities. Metabolism of AA occurs concomitantly to aggregation and serotonin release, but AA metabolites are not related to the shape change of human platelets. Platelet shape change and the initial activation of phospholipase C induced by thrombin or platelet-activating factor is independent of the metabolites derived from cyclo-oxygenase activity. Further activation of phospholipase C which occurs during platelet aggregation and release reaction is, however, partly dependent on cyclo-oxygenase metabolites.  相似文献   
100.
Using conditions that produced chronic inflammation in rat liver, we were able to find a correlation between induction of nitric oxide production and inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). This enzyme is a tetramer composed of identical M(r) 37,000 subunits. The tetramer contains 16 thiol groups, four of which are essential for enzymatic activity. Our information indicates that four thiol groups are S-nitrosylated by exposure to authentic nitric oxide (NO) gas. Furthermore, NO decreased GAPDH activity while increasing its auto-ADP-ribosylation. Reduced nicotinamide adenine dinucleotide and dithiothreitol are required for the S-nitrosylation of GAPDH caused by the NO-generating compound sodium nitroprusside. Our results suggests that a new and important action of nitric oxide on cells is the S-nitrosylation and inactivation of GAPDH. S-Nitrosylation of GAPDH may be a key covalent modification of multiple regulatory consequences in chronic liver inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号