首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   29篇
  国内免费   14篇
  2022年   5篇
  2021年   11篇
  2020年   5篇
  2019年   11篇
  2018年   6篇
  2017年   6篇
  2016年   8篇
  2015年   20篇
  2014年   27篇
  2013年   27篇
  2012年   32篇
  2011年   21篇
  2010年   26篇
  2009年   15篇
  2008年   32篇
  2007年   23篇
  2006年   23篇
  2005年   19篇
  2004年   8篇
  2003年   9篇
  2002年   10篇
  2001年   11篇
  2000年   10篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1978年   3篇
  1976年   1篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1966年   1篇
排序方式: 共有420条查询结果,搜索用时 171 毫秒
31.
Humans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity.  相似文献   
32.
33.
Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed‐linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β‐1,3 and β‐1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio‐temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence‐associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence‐associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.  相似文献   
34.
A new quantum dot (QD)-aptamer (apt) beacon that acts by folding-induced dissociation of a DNA intercalating dye, BOBO-3(B), is demonstrated with label-free thrombin detection. The beacon, denoted as QD-apt:B, is constructed by (1) coupling of a single-stranded thrombin aptamer to Qdot 565 via EDC/Sulfo-NHS chemistry and (2) staining the duplex regions of the aptamer on QD with excess BOBO-3 before thrombin binding. When mixing a thrombin sample with QD-apt:B, BOBO-3 is competed away from the beacon due to target-induced aptamer folding, which then causes a decrease in QD fluorescence resonance energy transfer (FRET)-mediated BOBO-3 emission and achieves thrombin quantitation. In this work, the effects of Mg(2+), coupling time, and aptamer type on the beacon's performances are investigated and discussed thoroughly with various methods, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and two-color differential gel electrophoresis. Using the best aptamer beacon (HTQ37), we attain highly specific and wide-range detection (from nM to μM) of thrombin in buffer, and the beacon can sense nM-range thrombin in 15% diluted serum. Compared to the reported QD aptamer assays, our method is advantageous from the aspect of using a simple sensory unit design without losing the detection sensitivity. Therefore, we consider the QD-apt:B beacon a potential alternative to immuno-reagents and an effective tool to study nucleic acid folding on QD as well.  相似文献   
35.
The success of genome-wide association studies has paralleled the development of efficient genotyping technologies. We describe the development of a next-generation microarray based on the new highly-efficient Affymetrix Axiom genotyping technology that we are using to genotype individuals of European ancestry from the Kaiser Permanente Research Program on Genes, Environment and Health (RPGEH). The array contains 674,517 SNPs, and provides excellent genome-wide as well as gene-based and candidate-SNP coverage. Coverage was calculated using an approach based on imputation and cross validation. Preliminary results for the first 80,301 saliva-derived DNA samples from the RPGEH demonstrate very high quality genotypes, with sample success rates above 94% and over 98% of successful samples having SNP call rates exceeding 98%. At steady state, we have produced 462 million genotypes per week for each Axiom system. The new array provides a valuable addition to the repertoire of tools for large scale genome-wide association studies.  相似文献   
36.

Background

Activation by extracellular ligands of G protein-coupled (GPCRs) and tyrosine kinase receptors (RTKs), results in the generation of second messengers that in turn control specific cell functions. Further, modulation/amplification or inhibition of the initial signalling events, depend on the recruitment onto the plasma membrane of soluble protein effectors. High throughput methodologies to monitor quantitatively second messenger production, have been developed over the last years and are largely used to screen chemical libraries for drug development. On the contrary, no such high throughput methods are yet available for the other aspect of GPCRs regulation, i.e. protein translocation to the plasma membrane, despite the enormous interest of this phenomenon for the modulation of receptor downstream functions. Indeed, to date, the experimental procedures available are either inadequate or complex and expensive.

Results

Here we describe the development of a novel conceptual approach to the study of cytosolic proteins translocation to the inner surface of the plasma membrane. The basis of the technique consists in: i) generating chimeras between the protein of interests and the calcium (Ca2+)-sensitive, luminescent photo-protein, aequorin and ii) taking advantage of the large Ca2+ concentration [Ca2+] difference between bulk cytosolic and the sub-plasma membrane rim.

Conclusion

This approach, that keeps unaffected the translocation properties of the signalling protein, can in principle be applied to any protein that, upon activation, moves from the cytosol to the plasma membrane. Thus, not only the modulation of GPCRs and RTKs can be investigated in this way, but that of all other proteins that can be recruited to the plasma membrane also independently of receptor activation. Moreover, its automated version, which can provide information about the kinetics and concentration-dependence of the process, is also applicable to high throughput screening of drugs affecting the translocation process.  相似文献   
37.
Li L  Qiao D  Fu X  Lao S  Zhang X  Wu C 《PloS one》2011,6(5):e20165
Important advances have been made in the immunodiagnosis of tuberculosis (TB) based on the detection of Mycobacterium tuberculosis (MTB)-specific T cells. However, the sensitivity and specificity of the immunological approach are relatively low because there are no specific markers for antigen-specific Th cells, and some of the Th cells that do not produce cytokines can be overlooked using this approach. In this study, we found that MTB-specific peptides of ESAT-6/CFP-10 can stimulate the expression of CD40L specifically in CD4(+) T cells but not other cells from pleural fluid cells (PFCs) in patients with tuberculous pleurisy (TBP). CD4(+)CD40L(+) but not CD4(+)CD40L(-) T cells express IFN-γ, IL-2, TNF-α, IL-17 or IL-22 after stimulation with MTB-specific peptides. In addition, CD4(+)CD40L(+) T cells were found to be mostly polyfunctional T cells that simultaneously produce IFN-γ, IL-2 and TNF-α and display an effector or effector memory phenotype (CD45RA(-)CD45RO(+)CCR7(-)CD62L(-)ICOS(-)). To determine the specificity of CD4(+)CD40L(+) T cells, we incubated PFCs with ESTA-6/CFP-10 peptides and sorted live CD4(+)CD40L(+) and CD4(+)CD40L(-) T cells by flow cytometry. We further demonstrated that sorted CD4(+)CD40L(+), but not CD4(+)CD40L(-) fractions, principally produced IFN-γ, IL-2, TNF-α, IL-17 and IL-22 following restimulation with ESTA-6/CFP-10 peptides. Taken together, our data indicate that the expression of CD40L on MTB-specific CD4(+) T cells could be a good marker for the evaluation and isolation of MTB-specific Th cells and might also be useful in the diagnosis of TB.  相似文献   
38.
39.
To test for human population substructure and to investigate human population history we have analysed Y-chromosome diversity using seven microsatellites (Y-STRs) and ten binary markers (Y-SNPs) in samples from eight regionally distributed populations from Poland (n=913) and 11 from Germany (n=1,215). Based on data from both Y-chromosome marker systems, which we found to be highly correlated (r=0.96), and using spatial analysis of the molecular variance (SAMOVA), we revealed statistically significant support for two groups of populations: (1) all Polish populations and (2) all German populations. By means of analysis of the molecular variance (AMOVA) we observed a large and statistically significant proportion of 14% (for Y-SNPs) and 15% (for Y-STRs) of the respective total genetic variation being explained between both countries. The same population differentiation was detected using Monmoniers algorithm, with a resulting genetic border between Poland and Germany that closely resembles the course of the political border between both countries. The observed genetic differentiation was mainly, but not exclusively, due to the frequency distribution of two Y-SNP haplogroups and their associated Y-STR haplotypes: R1a1*, most frequent in Poland, and R1*(xR1a1), most frequent in Germany. We suggest here that the pronounced population differentiation between the two geographically neighbouring countries, Poland and Germany, is the consequence of very recent events in human population history, namely the forced human resettlement of many millions of Germans and Poles during and, especially, shortly after World War II. In addition, our findings have consequences for the forensic application of Y-chromosome markers, strongly supporting the implementation of population substructure into forensic Y chromosome databases, and also for genetic association studies.  相似文献   
40.
Zhu JH  Wang XW  Ng S  Quek CH  Ho HT  Lao XJ  Yu H 《Journal of biotechnology》2005,117(4):355-365
A new class of microcapsules was prepared under physiological conditions by polyelectrolyte complexation between two oppositely-charged, water-soluble polymers. The microcapsules consisted of an inner core of half N-acetylated chitosan and an outer shell of methacrylic acid (MAA) (20.4%)-hydroxyethyl methacrylate (HEMA) (27.4%)-methyl methacrylate (MMA) (52.2%) (MAA-HEMA-MMA) terpolymer. Both 400 and 150 kDa half N-acetylated chitosans maintained good water solubility and supplied enough protonated amino groups to coacervate with terpolymer at pH 7.0-7.4, in contrast to other chitosan-based microcapsules which must be prepared at pH <6.5. The viscosity of half N-acetylated chitosan solutions between 80 and 3000 cPas allowed the formation of microcapsules with spherical shape. Molar mass, pH and concentration of half N-acetylated chitosan, and reaction time, influenced the morphology, thickness and porosity of the microcapsules. Microcapsules formed with high concentration of half N-acetylated chitosan exhibited improved mechanical stability, whereas microcapsules formed with low concentration of half N-acetylated chitosan exhibited good permeability. This 3D microenvironment has been configured to cultivate sensitive anchorage-dependent cells such as hepatocytes to maintain high level of functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号