首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  2023年   1篇
  2021年   2篇
  2018年   1篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
21.
22.
The teratogenicity of copper (Cu) deficiency may result from increased oxidative stress and oxidative damage. Dams were fed either control (8.0 microg Cu/g) or Cu-deficient (0.5 microg Cu/g) diets. Embryos were collected on Gestational Day 12 for in vivo studies or on Gestational Day 10 and cultured for 48 h in Cu-deficient or Cu-adequate media for in vitro studies. Superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione reductase (GR) activities were measured in control and Cu-deficient embryos as markers of the oxidant defense system. Superoxide anions were measured as an index of exposure to reactive oxygen species (ROS). No differences were found in GPX or GR activities among treatment groups. However, SOD activity was lower and superoxide anion concentrations higher in Cu-deficient embryos cultured in Cu-deficient serum compared to control embryos cultured in control serum. Even so, Cu-deficient embryos had similar CuZnSOD protein levels as controls. In the in vitro system, Cu-deficient embryos had a higher frequency of malformations and increased staining for superoxide anions in the forebrain, heart, forelimb, and somites compared to controls. When assessed for lipid and DNA oxidative damage, conjugated diene concentrations were similar among the groups, but a tendency was observed for Cu-deficient embryos to have higher 8-hydroxy-2'-deoxyguanosine concentrations than controls. Thus, Cu deficiency resulted in embryos with malformations and reduced SOD enzyme activity. Increased ROS concentrations in the Cu-deficient embryo may cause oxidative damage and contribute to the occurrence of developmental defects.  相似文献   
23.
Amino acid homology searches of the human genome revealed three members of the metallocarboxypeptidase (metallo-CP) family that had not been described in the literature in addition to the 14 known genes. One of these three, named CPA5, is present in a gene cluster with CPA1, CPA2, and CPA4 on chromosome 7. The cDNA encoding a mouse homolog of human CPA5 was isolated from a testis library and sequenced. The deduced amino acid sequence of human CPA5 has highest amino acid sequence identity (60%) to CPA1. Modeling analysis shows the overall structure to be very similar to that of other members of the A/B subfamily of metallocarboxypeptidases. The active site of CPA5 is predicted to cleave substrates with C-terminal hydrophobic residues, as do CPA1, -2, and -3. Using Northern blot analysis, CPA5 mRNA is detected in testis but not in kidney, liver, brain, or lung. In situ hybridization analysis shows that CPA5 is localized to testis germ cells. Mouse pro-CPA5 protein expressed in Sf9 cells using the baculovirus system was retained in the particulate fraction of the cells and was not secreted into the media. Pro-CPA5 was not enzymatically active toward standard CPA substrates, but after incubation with prohormone convertase 4 the resulting protein was able to cleave furylacryloyl-Gly-Leu, with 3-4-fold greater activity at pH 7.4 than at 5.6. Two additional members of the human CP gene family were also studied. Modeling analysis indicates that both contain the necessary amino acids required for enzymatic activity. The CP on chromosome 8 is predicted to have a CPA-like specificity for C-terminal hydrophobic residues and was named CPA6. The CP on chromosome 2 is predicted to cleave substrates with C-terminal acidic residues and was named CPO.  相似文献   
24.
25.
Copper (Cu)-deficiency-induced teratogenicity is characterized by major cardiac, brain, and vascular anomalies; however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity and increases superoxide anions, which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu-adequate (Cu+) or Cu-deficient (Cu−) dams were cultured for 48 h in Cu+ or Cu− medium, respectively. We report that NO levels were low in conditioned medium from Cu−/Cu− embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3′,5′-monophosphate (cGMP) concentrations in the Cu−/Cu− group. The altered NO levels in Cu-deficient embryos are functionally significant, as the administration of the NO donor DETA/NONOate increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling, which contributes to abnormal embryo and yolk sac development.  相似文献   
26.
BACKGROUND: Cu deficiency results in embryonic defects and yolk sac (YS) vasculature abnormalities. In diverse model systems, Cu treatment modulates angiogenesis, perhaps by influencing the activity of angiogenic mediators such as vascular endothelial growth factor (VEGF). Conversely, Cu chelators can suppress angiogenesis. METHODS: Gestation day (GD) 8.5 embryos from mice fed Cu-adequate (Cu+) or Cu-deficient (Cu-) diets were cultured in Cu+ or Cu- medium for 48 hr. Growth and development were evaluated, and YS vessel diameters were measured. Using RT-PCR and immunohistochemistry, the mRNA and protein expressions of VEGF, Flt-1, Flk-1, Angiopoietin-1 (Ang-1), and Tie-2 were analyzed. RESULTS: Cu+/Cu+ embryos developed normally, whereas Cu-/Cu- embryos showed a high incidence of developmental anomalies. Cu-/Cu- YS had a high proportion of vessels that were large in diameter compared to the Cu+/Cu+ YS. The mRNA expression of angiogenic mediators in Cu-/Cu- YS was similar to that in Cu+/Cu+ YS. The protein expression of VEGF in the Cu-/Cu- YS without any vessel defects, and Tie-2 in the Cu-/Cu- YS with both vessel defects and blood islands was significantly lower than that in the Cu+/Cu+ YS. The protein expression of Flt-1, Flk-1 and Ang-1 was similar among groups regardless of the presence, or type, of vessel defects. CONCLUSIONS: Results from the current study support the concept that Cu is required for the normal development of YS vasculature. Our data suggest that the impaired vascularization of Cu-deficient YS cannot be explained fully by the altered protein expression of the angiogenic growth factors reported here.  相似文献   
27.
The etiology of congenital heart disease is multifactorial, with genetics and nutritional deficiencies recognized as causative agents. Maternal zinc (Zn) deficiency is associated with an increased risk for fetal heart malformations; however, the contributing mechanisms have yet to be identified. In this study, we fed pregnant rats a Zn-adequate diet (ZnA), a Zn-deficient (ZnD), or a restricted amount of Zn adequate diet (RF) beginning on gestation day (GD) 4.5, to examine whether increased cell death and changes in cardiac neural crest cells (NCC) play a role in Zn deficiency-induced heart defects. Fetuses were collected on GD 13.5, 15.5, and 18.5 and processed for GATA-4, FOG-2, connexin-43 (Cx43), HNK-1, smooth muscle α-actin (SMA) and cleaved caspase-3 protein expression. Fetuses from ZnA-fed dams showed normal heart development, whereas fetuses from dams fed with the ZnD diet exhibited a variety of heart anomalies, particularly in the region of the outflow tract. HNK-1 expression was lower than normal in the hearts of GD13.5 and 15.5 ZnD fetuses, particularly in the right atrium and in the distal tip of the interventricular septum. Conversely, Cx43 immunoreactivity was increased throughout the heart in fetuses from ZnD dams compared to fetuses from control dams. The distribution and intensity of expression of SMA, GATA-4, FOG-2, and markers of apoptosis were similar among the three groups. We propose that Zn deficiency induced alterations in the distribution of Cx43 and HNK-1 in fetal hearts contribute to the occurrence of the developmental heart anomalies.  相似文献   
28.
Zanthoxylum zanthoxyloides is an endangered African tree producing numerous bioactive substances including antileukemic and antisickling agents. Here, the potential of Z. zanthoxyloides hairy root cultures was tested for the production of bioactive substances with limited natural resources. The efficiency of Agrobacterium rhizogenes LBA9402‐mediated transformation of leaf material was evaluated using different techniques. An optimal transformation frequency of 77% was obtained after 11 days by inoculating A. rhizogenes directly onto the central vein of 14‐week‐old leaves followed by a co‐cultivation period of 3 days. Different treatments in immersion mode (manual wounding, acetosyringone, CaCl2, ultrasonication) never exceeded these results. A maximum growth rate of 0.37 cm/day was determined during the exponential phase. Liquid chromatography‐diode array detection analysis showed the presence of skimmiamine, sesamine, chelerythrine, and chelerythrine derivatives in Z. zanthoxyloides hairy root lines. The maximum production of skimmiamine and chelerythrine in 28‐day‐old hairy root cultures was 45 ± 2 and 107 ± 4 mg/100 g dry weight, respectively. The present results highlight the potential of Z. zanthoxyloides hairy root cultures for the sustainable production of skimmiamine and chelerythrine.  相似文献   
29.
Hairy roots obtained by transformation via Agrobacterium rhizogenes provide an artificial plant material devoid of aerial parts with high growth on hormone-free media. Fundamental knowledge of hairy root physiology is essential to develop and control its culture. In contrast to shake-flask cultures, a bioreactor set-up combined with on-line data logging provides an efficient tool to study rapid physiological variations in hairy root cultures. Datura innoxia hairy roots were grown in a bioreactor equipped with on-line data analyses of pH, dissolved oxygen (pO2), conductivity, oxygen, and carbon dioxide. The experiments were done at a constant temperature and in the absence of light cues. The results obtained showed that the carbon dioxide evolution rate (CER) presented regular oscillations during the culture. Similar oscillations were also observed for the oxygen uptake rate (OUR). These signals were treated mathematically to look for the existence of a rhythm. An autocorrelation function was used to detect any periodic components. The results demonstrate that hairy root respiration exhibited peaks of 1 day. These oscillations, having a period of about 24 h, were also observed in pH and conductivity signals, although not for the pO2 signal. The data acquired in the absence of hairy roots showed that the observed periodic behavior was not an artifact. No effect on rhythms was observed by the imposition of an external "day/night" cycle. The fact that oscillations persisted in the absence of external stimuli, with a free-running period of 24 h, suggests that a circadian rhythm exists in hairy roots of D. innoxia.  相似文献   
30.
Protoplasma - The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号